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Abstract. Elements of groups I and II in the periodic table have valence electrons of s-type
and are usually considered as simple metals. Crystal structures of these elements at ambient
pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic
(Madelung) energy. Diverse structures were found under high pressure with decrease of the
coordination number, packing fraction and symmetry. Formation of complex structures can
be understood within the model of Fermi sphere–Brillouin zone interactions and supported by
Hume–Rothery arguments. With the volume decrease there is a gain of band structure energy
accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to
less than a half of the initial volume the interatomic distances become close to or smaller than
the ionic radius which should lead to the electron core ionization. At strong compression it is
necessary to assume that for alkali metals the valence electron band overlaps with the upper
core electrons, which increases the valence electron count under compression.

1. Introduction

The group-I elements of the periodic table from Li to Cs at normal conditions are related to
the free electron metals and adopt the body-centered cubic (bcc) structure. They transform
under pressure to the face-centered cubic (fcc) structure and at significant compression to open
and complex structures (see review papers [1–3] and references therein). Cesium is the heaviest
alkali metal containing one valence electron 6s over the core with many inner electron levels.
The route of structural transformations to complex and low-symmetry structures for Cs starts at
relatively low pressure: bcc–fcc–oC84 at 2.4 and 4.2 GPa, respectively. On further compression
phases tI4 and oC16 occurred at 4.3 and 12 GPa. Cs is the only alkali metal that turns
back to close-packed structure at 72 GPa with the double hexagonal close-packed cell (dhcp).
Electronic configuration of alkalis changes under pressure from free-electron type. For dense
lithium it was predicted by Neaton and Ashcroft a tendency to “a pairing of the ions” [4]. The
post-fcc high-pressure form Li-cI16 (at 40–60 GPa) is similar to Na-cI16 (104–117 GPa) and
related to more complex structures of heavy alkalis Rb-oC52 and Cs-oC84. For complex phases
in Rb and Cs was suggested electron transfer s–d while the upper empty d-band is moving on
compression downward and overlapping with the valence s-band [5]. It is assumed that at high
degrees of volume compression the valence electron are localized in the interstitial sites forming
a “pseudebinary” ionic or “electride” compound [6].

Physical properties as electrical resistance and superconductivity of Cs under compression
change essentially, as was discussed in review paper [2]. In this paper possible causes are analyzed
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that contribute to the formation of the complex crystal structures in cesium under pressure and
compared these with structures of lighter alkalis. The electronic cause is suggested for the crystal
structure formation and changes the physical properties.

2. Theoretical background and method of analysis

Two main energy contributions—electrostatic energy EEwald and the electron band structure
term EBS—are essential for crystal structure stability of metallic phases. The former term
dominates for high-symmetry close-packed structures and the latter usually favours the
formation of superlattices and distorted structures. The energy of valence electrons is decreased
due to a formation of Brillouin planes with a wave vector q near the Fermi level kF. and opening
of the energy pseudogap on these planes if qhkl ≈ 2kF [7]. Within a nearly free-electron model the
Fermi sphere radius is defined as kF = (3π2z/V )1/3, where z is the number of valence electrons
per atom and V is the atomic volume. This effect, known as the Hume–Rothery mechanism
(or electron concentration rule), was applied to account for the formation and stability of the
intermetallic phases in binary simple metal systems like Cu–Zn, and then extended and widely
used to explain the stability of complex phases in various systems, from elemental metals to
intermetallics [8–11].

It should be noted that two energy terms EEwald and EBS have different dependence on the
atomic volume as V −1/3 and V −2/3, therefore the latter term becomes more significant under
compression. This is one of the reasons for the stabilization of the complex low-symmetry
structures under pressure.

The stability of high-pressure phases in cesium is analyzed using a computer program BRIZ
[12] that has been recently developed to construct Brillouin zones or extended Brillouin–
Jones zones (BZ) and to inscribe a Fermi sphere (FS) with the free-electron radius kF. The
resulting BZ polyhedron consists of numerous planes with relatively strong diffraction factor
and accommodates well the FS. The volume of BZ’s and Fermi spheres can be calculated within
this program. The BZ filling by the electron states (VFS/VBZ) is estimated by the program,
which is important for understanding of electronic properties and stability of the given phase.
For a classical Hume–Rothery phase Cu5Zn8, the BZ filling by electron states is equal to 93%,
and is around this number for many other phases stabilized by the Hume–Rothery mechanism.

Diffraction patterns of these phases have a group of strong reflections with their qhkl lying
near 2kF and the BZ planes corresponding to these qhkl form a polyhedron that is very close
to the FS. The FS would intersect the BZ planes if its radius, kF, is slightly larger then qhkl/2,
and the program BRIZ can visualize this intersection. The ratio 2kF/qhkl is an important
characteristic for a phase stabilized due to a Hume–Rothery mechanism. Thus, with the BRIZ
program one can obtain the qualitative picture and some quantitative characteristics on how
a structure matches the criteria of the Hume–Rothery mechanism. It is important to estimate
possible number of valence electrons for the structures of Hume–Rothery type assuming the
Fermi sphere touches the BZ plains filling BZ polyhedra by electron states. This approach in
analysis leads to suggesting an increase of valence electron numbers for compressed alkalis.

3. Results and discussion

High-pressure structures of cesium are considered here to analyse the effects of the Hume–
Rothery mechanism on the occurrence of structural complexity in elements. The post-fcc phase
of Cs-III exists in the narrow pressure range 4.2–4.3 GPa and transforms to Cs-IV with an
open-packed tI4 structure [13]. On further compression Cs-V and Cs-VI are formed with oC16
and dhcp structures (structural data are presented in table 1). Relative compression V/V0 is
estimated assuming ambient lattice parameter for Cs-bcc to be a0 = 6.178 Å [13]. There is
significant volume reduction ∆V/V at the phase transitions II–III and III–IV that are equal to
6.4 and 6.1%, respectively [14], and there is a further large reduction in the volume of 9.3% at
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Table 1. Structure parameters of Cs phases (from [1]). Fermi sphere radius kF, the ratio of 2kF
to Brillouin zone vectors (2kF/qhkl) and the filling degree of Brillouin zones by electron states
VFS/VBZ are calculated by the program BRIZ [12].

Phase Cs-III Cs-IV Cs-V Cs-IV
Pearson symbol oC84 tI4 oC16 hP4 (dhcp)

Structural data

Space group C2221 I41/amd Cmca P63/mmc
Pressure, GPa 4.3 8 12 92
a, Å 9.2718 3.349 11.205 3.011
b, Å 13.3013 6.262
c, Å 34.2025 12.487 6.595 9.710
Atomic volume, Å3 50.21 35.01 30.60 19.06
V/V0 0.426 0.2974 0.259 0.162

FS–BZ data from the BRIZ program

z 0.96 2.5 4 4
kF, Å

−1 0.827 1.283 1.570 1.838
Total number of BZ planes 24 16 32 20
max 2kF/qhkl 1.010 1.066 1.055 1.040
min 2kF/qhkl 0.981 0.905 1.010 0.881
VFS/VBZ 0.844 0.792 0.930 0.786

the IV–V transition [15]. The volume change at the V–VI transition is not significant and the
mixed-phase region of Cs-V and VI is large, spanning from ≈ 68 to ≈ 95 GPa [16].

3.1. Cs-III-oC84 structure as the Hume–Rothery phase

The post-fcc phase of Li at pressures ≈ 40 GPa was found with the cI16 structure that is 2 × 2 ×
2 superlattice of bcc with slight shifts of atoms resulting in new (211) planes just in contact with
the FS [1, 2]. The new Brillouin zone is ≈ 90% filled by electron states, satisfying the Hume–
Rothery rules. Similar phase was found for Na and for heavy alkalis the post-fcc phases have
more complex structures such as Rb-oC52 and Cs-oC84. These structures are closely related to
cI16 and can be considered as superstructures of bcc as 2 × 2

√
2 × 3

√
2 and 2 × 2

√
2 × 5

√
2,

respectively. For these superstructures the number of atoms in the unit cell is N = 48 for Rb
and N = 80 for Cs. However, the real number of atoms was found to be 52 and 84, respectively.
Additional number of atoms can be explained by a reduction of the number of s electrons due
to s to d transfer. For Cs-oC84 the number of s electrons is considered to be z = 0.96, close
to the value ≈ 80/84, as indicated for 2kF position in figure 1 (top panel). The first diffraction
peak (211) for cI16 of Li and Na splits in Cs-oC84 because of the superlattice formation into
several peaks, which are close to 2kF position, satisfying the Hume–Rothery effects.

3.2. Valence electron count in Cs-IV-tI4
The Cs-IV structure has been observed at pressures 4.3–12 GPa and is defined as a tetragonal
cell containing 4 atoms with the space group I41/amd [13] (Pearson notation tI4, coordination
number CN = 8). That was the first case of finding of this type of structure in any element and it
was found also in lighter alkalis Rb and K. The volume reduction at III–IV transition is 6% and
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Figure 1. Calculated diffraction patterns (left) and corresponding Brillouin zones with the
inscribed FS (right). In the top panel—Cs-III, oC84 and in the bottom panel—Cs-IV, tI4 with
structural parameters given in table 1. The position of 2kF for given z and the hkl indices of the
principal planes are indicated on the diffraction patterns. Brillouin zones are shown in common
view with a∗ down and c∗ up.

the volume compression V/V0 is about 0.3. For Cs-tI4 at 8 GPa interatomic distances for 4 + 4
neighbours are 3.35 and 3.54 Å, which are close to the double ionic radius 1.74 Å× 2 = 3.48 Å,
suggested by Shannon for Cs at CN = 8 [17]. At these values a core overlapping should be
expected and as consequence it is necessary to assume a transfer of upper core electrons into the
valence band via spd hybridization of 6s-5p-5d electron levels. The effective number of valence
electrons should increase and for Cs-tI4 it is suggested that the number of valence electrons
becomes z = 2.5, counting only the sp electrons. With this value of z there is a matching to
the Hume–Rothery rule (figure 1, bottom panel). Axial ratio of the tetragonal cell is c/a = 3.73
and this value corresponds to nearly equal distances to the neighbouring atoms which results in
a suitable form of the BZ polyhedron with the (103) planes being in contact with FS.

Assumption of the electron core ionization is reasonable for explanation of the significant
volume reduction at the transition from a close-packed structure to an open-packed one with
quite short interatomic distances.
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Figure 2. Calculated diffraction patterns (left) and corresponding Brillouin zones with the
inscribed FS (right). In the top panel—Cs-V, oC16 and in the bottom panel—Cs-VI, dhcp-hP4
with structural parameters given in table 1. The position of 2kF for given z and the hkl indices
of the principal planes are indicated on the diffraction patterns.

3.3. Valence electron count in Cs-V-oC16 and Cs-VI-dhcp

In the pressure range 12–72 GPa, the Cs-V phase has been observed with the oC16 structure
(see table 1 and figure 2, top panel). Coordination number for this structure is CN = 10–11 with
the interatomic distances 3.237–3.612 Å at 12 GPa [15]. The double ionic radius for CN = 10
suggested for Cs by Shannon [17] equals to 1.81 Å × 2 = 3.62 Å. Thus for Cs-oC16 there is a
significant overlap for standard size ions and standard electronic configuration that needs further
revision. For structure stability it is necessary to assume further core ionization—an overlap
of the upper core electrons with the valence band electrons. This process is suggested to have
started in the Cs-V-tI4 phase and is assumed to continue in next phases at higher pressures.
For Cs-V-oC16 and Cs-VI-dhcp valence electron count is assumed to be z = 4 which matches
the Hume–Rothery criteria.

Interestingly, that oC16 structure was found under pressure for group-IV elements Si and
Ge that have 4 valence electrons. Similarities in atomic positions and axial ratios in the
crystal structures of Cs-oC16, Si-oC16 and Ge-oC16 support the assumption of the similarity
in electronic configurations in these elements at the pressure conditions of the oC16 phase, as
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was discussed in [9]. Next phase Cs-VI-dhcp also has a relation to the high pressure phases of
group-IV elements: at certain compression a close-packed hexagonal (hcp) structure is found in
Si, Ge, Sn and Pb. The difference between hcp and dhcp is only in the different sequence of
close-packed layers, it is ABA and ABACA, respectively. For Cs-dhcp axial ratio is c/2a = 1.61
that is close to the ideal c/a ratio for hcp (1.63). The reason for the occurrence of dhcp for Cs
can be found in the stronger effects of FS-BZ interactions and by additional contributions to
the band structure energy from the BZ planes (103) and (105) that are additional comparing
with hcp.

The mixed-phase region of Cs-V and VI is quite large, spanning from ≈ 68 to ≈ 95 GPa which
supports an assumption of their nearly congruent electronic configurations and transformation
is initiated by more close-packing state for dhcp in Cs-VI. No further phase transitions have
been found and the Cs-dhcp has been observed up to 223 GPa, the highest pressure reached in
the experimental study [18].

Physical properties for Cs under pressure correlate with the electronic state depending on
the FS-BZ configuration and BZ filling by electron states, as have been analysed in the review
paper [2]. For electrical resistance there is a steep increase at fcc to oC84 transition, a drop at
the transition to tI4 and a new steep increase for oC16. These changes of resistivity directly
follow the changes of BZ filling by electrons shown in the bottom line of table 1. Appearance of
superconductivity was found for Cs-tI4 and Cs-oC16 with the superconducting temperature Tc

up to 0.3 K at 12 GPa and 1.5 K at 14 GPa, respectively.

4. Conclusions

The analysis of the structural transitions in Cs, its coordination number, nearest neighbour
distances, as well as the configuration of the Brillouin zone interaction with the Fermi sphere
in the reciprocal space, all point to the suggestion that there is a core ionization happening in
the high-pressure phases of Cs. For the Cs-tI4 phase, it is suggested that the number of valence
electrons equals to 2.5. In the higher-pressure phases oC16 and dhcp, the number of valence
electrons is suggested to be z = 4. The heavy alkali metal Cs has a structural sequence under
pressure that is completely different from the lightest alkali element Li which is connected to
the differences in their electronic configurations. The complex phases of Li above 60 GPa are
considered to have an increased valence electron number equal to z = 2 [19] whereas for Cs
above 12 GPa it is suggested to be z = 4. This proposed change in Cs is associated with the
existence of the upper empty d-band and inner p-band for heavy alkalis. Phases tI4 and oC16
were found also for K and Rb.

Special feature of Cs phase transformations is that after the transition from the close-
packed into the complex and open-packed structures which are characterized by the decrease in
coordination number there is re-entrance of a close-packed structure (dhcp) that is accompanied
by the increase of the packing density. This behaviour resembles the transformation of polyvalent
elements of group IV (Si, Ge, Sn) from open-packed to close-packed structures.

This analogy in structural transitions between Cs and the polyvalent elements supports
the suggestion to consider similarity of valence electron configuration for heavy alkali metals
and polyvalent metals. Consideration of the core–valence band electron transfer may promote
a better understanding of non-traditional behaviour of alkali elements under significant
compression. Changes of physical properties of Cs under pressure could be accounted for the
increase of valence electron energy contribution and moreover for the overlap of core and valence
electron bands.

In conclusion, it might be interesting to compare the structures suggested for the metallic
hydrogen at ≈ 500 GPa [20] and Cs-V, with I41/amd-tI4 cells for both elements. However, in
the metallic state for H is the only valence electron and the FS radius correspond to z = 1.
The axial ratio for H-tI4 is optimized as c/a = 2.54, whereas for Cs-V-tI4 c/a = 3.73 providing
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the proper FS-BZ configuration with the increase of valence electron number because of core
ionization.
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2009 Phys. Rev. Lett. 103 115501
[7] Jones H 1962 The Theory of Brillouin Zones and Electron States in Crystals (Amsterdam: North-Holland)
[8] Degtyareva V F and Degtyareva O 2009 New J. Phys. 11 063037
[9] Degtyareva V F 2013 Crystals 3 419–30

[10] Degtyareva V F 2014 Solid State Sci. 36 62–72
[11] Degtyareva V F and Afonikova N S 2013 J. Phys. Chem. Solids 74 18–24
[12] Degtyareva V F and Smirnova I S 2007 Z. Kristallogr. 222 718–21
[13] Takemura K, Minomura S and Shimomura O 1982 Phys. Rev. Lett. 49 1772–5
[14] McMahon M I, Nelmes R J and Rekhi S 2001 Phys. Rev. Lett. 87 255502
[15] Schwarz U, Takemura K, Hanfland M and Syassen K 1998 Phys. Rev. Lett. 81 2711
[16] Takemura K, Christensen N E, Novikov D, Syassen K, Schwarz U and Hanfland M 2000 Phys. Rev. B 61

14399–404
[17] Shannon R D 1976 Acta Cryst. A32 751–67
[18] Takemura K and Nakano S 2003 Rev. Sci. Instr. 74 3017–20
[19] Degtyareva V F 2015 J. Phys.: Conf. Ser. 653 012075
[20] Borinaga M, Errea I, Calandra M, Mauri F and Bergara A 2016 Phys. Rev. B 93 174308


