
Abstract. The current understanding of the superconductor ±
insulator transition is discussed level by level in a cyclic spiral-
like manner. At the first level, physical phenomena and pro-
cesses are discussed which, while of no formal relevance to the
topic of transitions, are important for their implementation and
observation; these include superconductivity in low electron
density materials, transport and magnetoresistance in super-
conducting island films and in highly resistive granular materi-
als with superconducting grains, and the Berezinskii±
Kosterlitz±Thouless transition. The second level discusses and
summarizes results from various microscopic approaches to the
problem, whether based on the Bardeen±Cooper±Schrieffer
theory (the disorder-induced reduction in the superconducting
transition temperature; the key role of Coulomb blockade in
high-resistance granular superconductors; superconducting

fluctuations in a strong magnetic field) or on the theory of the
Bose±Einstein condensation. A special discussion is given to
phenomenological scaling theories. Experimental investiga-
tions, primarily transport measurements, make the contents of
the third level and are for convenience classified by the type of
material used (ultrathin films, variable composition materials,
high-temperature superconductors, superconductor±poor metal
transitions). As a separate topic, data on nonlinear phenomena
near the superconductor±insulator transition are presented. At
the final, summarizing, level the basic aspects of the problem are
enumerated again to identify where further research is needed
and how this research can be carried out. Some relatively new
results, potentially of key importance in resolving the remaining
problems, are also discussed.

1. Introduction

As temperature decreases, many metals pass from the
normal to the superconducting state which is phenomen-
ologically characterized by the possibility of a dissipationless
electric current and by the Meissner effect. As a result of a
change in some external parameter (for example, magnetic
field strength), the superconductivity can be destroyed. In
the overwhelming majority of cases, this leads to the return
of the superconducting material to the metallic state.
However, it has been revealed in the last three decades that
there are electron systems in which the breakdown of
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superconductivity leads to the transition to an insulator
rather than to a normal metal. At first, such a transition
seemed surprising, and numerous efforts were undertaken in
order to experimentally check its reality and to theoretically
explain its mechanism. It was revealed that the insulator can
prove to be quite extraordinary; moreover, upon breakdown
of superconductivity with the formation of a normal metal,
the metal can also be unusual. This review is devoted to a
discussion of the state of the art in experiment and theory in
this field.

1.1 Superconducting state, electron pairing
By the term `superconducting state', we understand the state
of metal which, at a sufficiently low temperature, has an
electrical resistance exactly equal to zero at the zero
frequency, thus indicating the existence of a macroscopic
coherence of electron wave functions. This state is brought
about as a result of superconducting interactions between
charge carriers. Such an interaction is something more
general than superconductivity itself, since it can either lead
to or not lead to superconductivity.

According to the Bardeen±Cooper±Schrieffer (BCS)
theory, the transition to the superconducting state is accom-
panied by and is caused by a rearrangement of the electronic
spectrum with the appearance of a gap with a width of 2D at
the Fermi level. The superconducting state is characterized by
a complex order parameter

F�r� � D exp
ÿ
ij�r�� ; �1�

in which the value of the gap D in the spectrum is used as the
modulus. If the phase j�r� of the order parameter has a
gradient, j�r� 6� const, then a particle flow exists in the
system. Since the particles are charged, the occurrence of a
gradient indicates the presence of a current in the ground
state.

The rearrangement of the spectrum can be represented as
a result of a binding of electrons from the vicinity of the Fermi
level (with momenta p and ÿp and oppositely directed spins)
into Cooper pairs with a binding energy 2D. The binding
occurs as a result of the effective mutual attraction of
electrons located in the crystal lattice, which competes with
the Coulomb repulsion.

A Cooper pair is a concept that is rather conditional, not
only since the pair consists of two electrons moving in
opposite directions with a velocity vF, but also since the size
of a pair in the conventional superconductor, z � �hvF=D �
10ÿ4 cm, is substantially greater than the average distance
between pairs, s � �g0D�ÿ1=3 � 10ÿ6 cm (g0 is the density of
states in a normal metal at the Fermi level):

z4 s : �2�

In fact, the totality of Cooper pairs represents a collective
state of all electrons.

It has long been known that superconductivity also arises
in systems with an electron concentration that is substantially
less than that characteristic of conventional metals, for
example, in SrTiO3 single crystals with an electron concentra-
tion of about n � 1019 cmÿ3 [1]. Furthermore, the parameter z
in type-II superconductors can be less than 100 A

�
. Therefore,

inequality (2), which is necessary for the applicability of the
BCS model, can prove to be violated. The materials in which
z9 s are referred to as `exotic' superconductors; these also

include high-temperature superconductors in which the
superconductivity is caused by charge carriers moving in
CuO2 crystallographic planes. As in any two-dimensional
(2D) system, the density of states g0 in the CuO2 planes in the
normal state is independent of the charge carrier concentra-
tion and, according to measurements, is g0 � 2:5� 10ÿ4 Kÿ1

per structural element in each CuO2 crystal plane [to
approximately one and the same magnitude in all families of
the cuprate superconductors (see, e.g., Ref. [2])]. Assuming,
for the sake of estimation, that D is on the order of the
superconducting transition temperature Tc, we obtain the
average distance between the pairs in CuO2 planes:
s � �g0Tc�ÿ1=2 � 25 A

�
at Tc � 100 K. This value is compar-

able with the typical coherence length z � 20 A
�

in high-
temperature superconductors.

The existence of exotic superconductors, for which
inequality (2) is violated, forced researchers to turn to
another model of superconductivityÐ the Bose±Einstein
condensation (BEC) of the gas of electron pairs considered
as bosons with a charge 2e [3]Ðand to investigate the
crossover from the BCS to the BEC model (see, e.g., the
review [4]).One of the essential differences between these
models consists in the assumption of the state of the electron
gas at temperatures exceeding the transition temperature. The
BEC model implies the presence of bosons on both sides of
the transition. An argument in favor of the existence of
superconductors with the transition occurring in the BEC
scenario is the presence of a pseudogap in some exotic
superconductors. It is assumed that the pseudogap is the
binding energy of electron pairs above the transition
temperature (for more detail, see the end of Section 4.3
devoted to high-temperature superconductors).

In the BCS model, the Cooper pairs for T > Tc appear
only as a result of superconducting fluctuations; the equili-
brium concentration of pairs exists only for T < Tc. The
crossover from the BCS to the BEC model consists in
decreasing gradually the relative size of Cooper pairs and
appearing the pairs on both sides of the transition, which are
correlated in phase in the superconducting state and uncorre-
lated in the normal state. The conception that in super-
conducting materials with a comparatively low electron
density the equilibrium electron pairs can exist for T > Tc

began to be discussed immediately after the discovery of these
materials [5].

For the problem of the superconductor±insulator transi-
tion, the question of the interrelation between the BCS and
BEC models is of large importance, since near the boundary
of the region of existence of the superconducting state it is
natural to expect a decrease in the density of states g0 and an
increase in s, so that inequality (2) must strongly weaken or be
completely violated. In any case, the problem of a phase
transition that is accompanied by localization makes sense
within the framework of both approaches.

By having agreed that the superconductivity of exotic
superconductors can be described using the BEC model, we
adopt that for a temperature T > Tc there can exist both
fluctuation-driven and equilibrium electron pairs. Then, a
natural question arises: since the electron pairs can exist not
only in the superconducting but also in the normal state, can it
happen that pair correlations between the localized electrons
can be retained as well on the insulator side in super-
conductor±insulator transition? Below, we shall repeatedly
return to this question.
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1.2 Superconductor±insulator transition
as a quantum phase transition
It is well known that in the ground state the electron wave
functions at the Fermi level can be localized or delocalized.
In the first case, the substance is called an insulator, and in
the second case a metal. As was already said above, it has
long been considered that superconductivity can arise only
on the basis of a metal, i.e., the coherence of the delocalized
wave functions can arise only as an alternative to their
incoherence. We now know that with the breakdown of
superconductivity all electron wave functions that became
incoherent can immediately prove to be localized. In this
case, it is assumed that the temperature is equal to zero, so
that on both sides of the transition the electrons are in the
ground state.

The phase transition between the ground states is called
the quantum transition. This means that it is accompanied by
quantum rather than thermal fluctuations. The transition can
be initiated by a change in a certain control parameter x, for
instance, the electron concentration, disorder, or magnetic
field strength. Superconductivity can also be destroyed by a
change in the control parameter x at a finite temperature,
when thermodynamic thermal fluctuations are dominant. It
can be said that in the plane �x;T � there is a line of
thermodynamic phase transitions x�T �, which is terminated
on the abscissa �T � 0� at the point x � x0 of the quantum
transition.

Let us shift the state of the superconducting metal toward
the region of insulating states by changing a certain parameter
x. Under the effect of this shift, it can happen that, first,
superconductivity will disappear, and then the normal metal±
insulator transition will occur. It is precisely according to this
scenario that the events develop with a decreasing concentra-
tion of Nb in the amorphous NbxSi1ÿx alloy [6]: at an Nb
concentration of approximately 18%, the temperature of the
superconducting transition drops to zero and the alloy
becomes a normal metal, and the metal±insulator transition
occurs only at an Nb concentration of 12% (Fig. 1). The
superconductor±insulator transition is split into two sequen-
tial transitions. This example is instructive in the sense that
though in the set of temperature dependences r�T � (Fig. 1a)
the boundary between the superconducting and nonsuper-

conducting states is clearly visible, to prove the existence of an
intermediate metallic region and to reveal themetal±insulator
transition, it is necessary to perform extrapolation of the
s�T � � 1=r�T � dependences as T! 0 in a certain interval of
concentrations. The quantity s0 presented in Fig. 1b as a
function of the Nb concentration is the result of this
extrapolation.

Of greater interest is the case of unsplit transition, where
the superconductor directly transforms into the insulator,
possibly passing through a bordering isolated normal state.
This survey is mainly devoted to precisely such transitions,
which are, as we will see, sufficiently diverse.

Let us schematically depict the phase diagrams of these
phase transitions in the plane �x;T � (Fig. 2), assuming for the
sake of certainty the three-dimensional nature of the electro-
nic system. As is known, the metal±insulator transition is
depicted on this plane in the form of an isolated point on the
x-axis, because the very concept of an `insulator' is strictly
defined only at T � 0 (see, e.g., the review [7]). Therefore, the
vertical dashed straight lines in Fig. 2 do not mark real phase
boundaries.

In the diagram presented in Fig. 2a, which corresponds
to a split transition, the dashed straight line issuing from the
point IÿM shows that in the region I the extrapolation of
the conductivity to T � 0 will give zero, and in the region M
it will give a finite value. According to Fig. 1, the alloy
NbxSi1ÿx has precisely such a phase diagram. In Section 4.4,
we shall return to NbxSi1ÿx type substances and shall see
that the diagram presented in Fig. 2a has, in turn, several
variants.

In the diagram shown in Fig. 2b, for any state to the right
of the dashed line a temperature decrease will lead to
emergence of superconductivity; therefore, to determine
whether the state is metallic or insulating, it is necessary to
measure the temperature dependence of resistivity in the
region that lies above the superconducting transition, with the
extrapolation of this dependence to T � 0. Such a transition
appears to be realized, for example, in ultrathin films of
amorphous Bi (see Fig. 18 in Section 4.1).

Finally, one more variant of the phase diagram, which
was for the first time proposed inRef. [8], is given in Fig. 2c. In
this diagram, the metal±insulator transition is completely
absent, since it should have to be located in the super-
conducting region. From this transition, only part of the
critical region is retained, which lies higher than the region of
superconductivity. This phase diagram is observed for TiN
(see Fig. 31 in Section 4.2).
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Figure 1. (a) Temperature dependences of resistivity r�T � of films of the

amorphous NbxSi1ÿx alloy at various concentrations of Nb [6].
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1.3 Role of disorder. Granular superconductors
From the before-studied theory of the normal metal±
insulator quantum transition, it is known that this transition
can be initiated by two fundamentally different reasons:
growing disorder in the system of noninteracting electrons
(Anderson transition) or decreasing electron concentration in
the presence of a Coulomb electron±electron interaction in an
ideal system without a chaotic potential (Mott transition). In
this review (in any case, in its experimental part), we shall
assume that the superconductor±insulator transition occurs
in a strongly disordered Anderson type electron system. Even
when the control parameter x is the electron concentration, it
is assumed that the latter changes against the background of a
sufficiently strong random potential.

In order to answer the question concerning in which case
andwhich of the diagrams shown in Fig. 2 can be realized, it is
necessary to study the influence of disorder on the super-
conductivity. The first result in this area was obtained by
P W Anderson as early as 1959. In Ref. [9] he showed that if
the electron±electron Coulomb interaction is ignored, then
the introduction of nonmagnetic impurities does not lead to a
substantial change in the superconducting transition tem-
perature. The allowance for Coulomb interactions changes
the situation. As was shown by Finkel'shtein [10, 11] for the
example of two-dimensional systems, the Coulomb interac-
tion does suppress superconductivity in so-called dirty
systems, the mechanism of suppression being caused by the
combination of electron±electron interaction with impurity
scattering (see Section 2.1).

From the variety of random potentials that describe
disorder, let us single out two limiting cases: systems with a
potential inhomogeneity on an atomic scale, which are
subsequently considered as uniform, and systems with
inhomogeneities that substantially exceed atomic dimen-
sions. We shall call the latter systems granular, assuming for
the sake of certainty that they consist of granules of a
superconductive material with a characteristic dimension b,
which are separated by interlayers of a normal metal or an
insulator. A control parameter in such a granular material
can be, for example, the resistance of the interlayers.

There exist both theoretical and experimental criteria
which make it possible to relate a real electronic system to
one of these limiting cases. The theoretical criterion is
determined by the possibility of the generation of a super-
conducting state in one granule taken separately, irrespective
of its environment. For this event to occur, it is necessary that
the average spacing between the energy levels of electrons
inside the granules be less than the superconducting gap D:

de � �g0b3�ÿ1 < D ; �3�

where g0 is the density of states at the Fermi level in the bulk
of the massive metal, and b3 is the average volume of one
granule. The relationship de � D specifies the minimum size
of an isolated granule:

bSC � �g0D�ÿ1=3 ; �4�

for which the concept of the superconducting state makes
sense. When the inequality b < bSC is fulfilled, no granules
that could be superconducting by themselves exist. Such a
material, from the viewpoint of the superconducting transi-
tion, is uniformly disordered; in it, the transition tempera-
ture Tc is determined by the average characteristics of the

material and can smoothly change together with these
characteristics.

The experimental criterion which makes it possible to
distinguish between the superconductor±insulator transitions
in granular and quasihomogeneously disordered systems is
illustrated in Fig. 3. Here, the control parameter is the
thickness b of a lead film deposited on the surface of an SiO
substrate. The dependences shown in Fig. 3a were obtained
for lead films deposited on an intermediate sublayer of
amorphous Ge. The temperature of the superconducting
transition decreases with decreasing b in this series of films;
at a zero temperature, an increase in the thickness b leads to a
direct transition from the insulating to the superconducting
state. No macrostructure was revealed in these films by the
structural analysis performed simultaneously. The intermedi-
ate thin layer of amorphous Ge appears to prevent the
coalescence of atoms into granules in the deposited material
(see also Section 4.1). In any case, if the granules exist, their
size should be lower than the critical size (4).

The dependences shown in Fig. 3b were obtained for lead
films deposited directly onto a mirror surface of SiO cooled
to liquid-helium temperature. With this method of deposi-
tion, the lead atoms are collected into droplet-like granules,
which reach a diameter of 200 A

�
and a height of 50 ± 80 A

�

before they start coalescing. A film in which no coalescence
has yet occurred is called an island film: it represents a
system of metallic islands between which the conductivity is
achieved via tunneling. In all the films, the superconducting
transition begins, if it occurs at all, at one and the same
temperature Tc � 7 K. This means that the granule sizes are
sufficiently large, so that in them de < D, the superconduct-
ing transition in the granules occurs at the same temperature
as that in the massive metal, and the behavior of the entire
material on the whole depends on the interaction between
the granules.

As can be seen from Fig. 3, the transition in the granular
system possesses one more specific feature. Near the transi-
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(a) Superconductor±insulator transition in finely dispersed quasihomoge-

neous films deposited on an SiO surface over an intermediate thin layer of

amorphous Ge. In the superconducting region, the R�T � curves demon-

strate a correlation between the normal resistance and the superconduct-

ing transition temperature. (b) Superconductor±insulator transition in

granular films deposited directly onto the SiO surface. In such amethod of

deposition, the lead atoms coalesce into granules. The temperature of the

superconducting transition in the film becomes constant at a film thickness

exceeding the critical one.

4 V F Gantmakher, V T Dolgopolov Physics ±Uspekhi 53 (1)



tion, on the superconductor side, the temperature dependence
of the resistance R�T � for T < Tc follows a very strange
formula [13]

R � R0 exp
T

T0
;

which can be called the `inverse-Arrhenius law'. In quasi-
homogeneous systems, to which this survey is devoted, such
dependences have not been observed.

In an isolated particle with the size of b < bSC, no
superconducting state exists, in the sense that the coherent
state of all electrons with a common wave function is absent.
However, a superconducting interaction through phonons is
retained, which causes effective attraction between the
electrons. The superconducting interaction gives rise to the
parity effect: the addition of an odd electron to the electron
system leads to a greater increase in the total electron energy
than the addition of a subsequent even electron. The
difference is equal to 2Dp, where Dp is the binding energy per
electron:

Dp � E2l�1 ÿ 1

2
�E2l � E2l�2� : �5�

The parity effect was examined experimentally when studying
the Coulomb blockade in superconducting grains [14, 15]. A
theoretical treatment [16] showed that, because of strong
quantum fluctuations of the order parameter, the binding
energy in small grains,

b5 bSC ; i:e:; de4D ; �6�

not only is retained, but, in general, becomes greater:

Dp � de
2 ln �de=D� > D : �7�

The magnitude of Dp is much less than the level spacing de
caused by dimensional quantization, but it is by nomeans less
than the superconducting gap D.

1.4 Fermionic and bosonic scenarios for the transition
There are two scenarios for a superconductor±insulator
transition. The foundation of the theory of the fermionic
scenario of the superconductor±insulator transition was laid
by the work of Finkel'shtein [10, 11]. Its essence lies in the
fact that, due to various reasons, the efficiency of the
superconducting interaction in a dirty system at a zero
temperature gradually drops to zero, and Anderson locali-
zation occurs in the arising normal fermionic system.
However, this scenario is by no means unique. As a result
of the rapid development of theoretical and experimental
studies in this field, it was revealed that there is one more
scenario, the bosonic scenario, for this transition. The
difference between the scenarios can conveniently be
formulated using the complex order parameter (1). The
phase j of the order parameter inside the massive super-
conductor is constant in the absence of current; this reflects
the existence of quantum correlations between the electron
pairs. In the presence of fluctuations, the superconducting
state of a three-dimensional system is retained until the
correlator G�r�,

G�r� � 
F�r�F�0��! G0 6� 0 as jrj ! 1 ; �8�

tends to a finite valuewith increasing jrj. The angular brackets
in formula (8) indicate averaging over the quantum state of
the system, and F�r� is the complex order parameter.

The consideration given in Refs [10, 11] is based on the
BCS theory. In the BCS and related theories, the energy gap
D, i.e., the modulus of the order parameter jFj, becomes zero
at the phase-transition point and the phase automatically
becomes meaningless. However, the superconducting state
can be destroyed by another method as well: the correlator (8)
can be made vanishing at a nonzero modulus of the order
parameter by the action of phase fluctuations of the order
parameter. This is exactly the bosonic scenario for the
transition. The meaning of this name lies in the fact that the
finite modulus of the order parameter at the transition
indicates the presence of coupled electron pairs, i.e., the
concentration of bosons during transition does not become
zero. The realization of the bosonic scenario is favored by the
fact that the superconductors with a low electron density are
characterized by a weaker shielding and a comparatively
small `rigidity' relative to phase changes, thus raising the
role of the phase fluctuations [17, 18].

The bosonic scenario was mainly developed for the case
of uniform disordered superconductors [8]. However, it
should be noted that in granular superconductors this
scenario is realized quite naturally in the framework of the
BCS theory. Indeed, if we move from one curve to another in
Fig. 3b from bottom to top, assuming for simplicity that the
difference between the states arises as a result of a gradual
increase in the resistance of the interlayers between the
unaltered granules, we shall see that even when the super-
conductivity of the macroscopic sample disappears (upper
curves in Fig. 3b), the granules remain superconducting.
However, the Cooper pairs in them prove to be `localized,'
each in its own granule.

The word localized is put in quotation marks, since if the
size b of the granules is macroscopic, then the appearing
limitation on the displacement of Cooper pairs will not agree
with the conventional understanding of the term `localiza-
tion'. Let, however, b9 bSC. Relationship (4) determines the
applicability boundary of the concept of granular super-
conductors: below this boundary they transform into so-
called dirty superconductors with characteristic atomic
lengths describing disorder. The boundary of a granule with
parameters (6) can already be considered simply as a defect,
and the electrons located inside it, as being localized on a
length b < bSC, irrespective of the structure of the wave
function inside this region. According to the parity effect
[14±16], pair correlations with a finite binding energy are
retained between the electrons localized on such a defect.

Thus, granular superconductors prove to be a natural
model object for studying the bosonic scenario for super-
conductor±insulator transitions. It is interesting that some
manifestations of this scenario were discovered experimen-
tally in granular two-dimensional systems at a time when the
problem of superconductor±insulator transitions had not yet
appeared [19, 20].

The tunneling current between two superconducting
granules, in fact, consists of two components: the super-
conducting Josephson current of Cooper pairs, and a single-
particle dissipative current. The Josephson current in the
junction can for various reasons be suppressed; in particu-
lar, it is suppressed by fluctuations in the case of too high a
normal resistance Rn of the junction [21]. Then, even through
contact with the superconducting banks of the junction, only
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a normal single-particle current jn � V=Rn can flow, and then
only if a potential difference V is applied across the junction.
This gives rise to a paradoxical behavior of the granular
superconductor with decreasing temperature. The concentra-
tion of single-particle excitations in superconducting granules
diminishes exponentially with a decrease in the temperature:
n / exp �ÿD=T � and, correspondingly, the resistance of all
junctions grows exponentially: R / exp �D=T �. As a result,
the resistivity r of the entire material increases rather than
decreases with temperature for T < Tc. This exponential
increase in the resistivity,

ln
r
r0
/ Tÿ1 ;

starting at a temperature equal to the temperature of the
superconducting transition Tc, was experimentally examined
in island films [19, 20] (Fig. 4a) and, later, in granular films
with superconducting granules (Fig. 4b [22]) and in a three-
dimensional (3D) material [23].

If we destroy (by an external magnetic field) the super-
conducting gap in the granules, making them normal, then
the number of quasiparticles at the Fermi level on the
superconducting sides of the junction will grow and the
junction resistance will return to the normal resistance Rn.
In other words, a system of metallic granules in an insulating
matrix over a certain interval of parameters can have a finite
resistivity r at T � 0 if the granules are normal, but becomes
an insulator, with r � 1, if the granules are superconducting.
A specific feature and, at the same time, an attribute of such a
system is negative magnetoresistance, which becomes stron-
ger as the temperature lowers:

r�B;T �
r�0;T � � exp

�
ÿD
T

�
; B > Bc ; �9�

where D � Tc (it is everywhere assumed that the temperature
T is measured in energy units), Tc is the critical temperature,
and Bc is the magnetic field induction that destroys the
superconductivity of separate granules. In the experiment
whose results are presented in Fig. 5, a magnetic field of 10 T
decreases the resistance by more than two orders of
magnitude at a temperature of 0.5 K.

An increase in resistance in a zero field and negative
magnetoresistance are possible, even at temperatures that
exceed the temperature of the superconducting transition,

due to superconducting fluctuations [25, 26]. As a result of the
absence of a Josephson coupling between the granules, the
virtual Cooper pairs that arise due to fluctuations make no
contribution to electron transport. However, the fluctuation-
induced decrease in the density of single-particle states in the
granules strongly increases intergranular resistance; this
resistance decreases if the fluctuations are suppressed by a
strong magnetic field. This is illustrated in the inset to Fig. 5
[curveR�B�] obtained in a sample of amorphous Ge, in which
the Josephson couplings between the Al granules ensure a
superconducting state at a low temperature T � 2 K which
only slightly exceeds Tc; the negative magnetoresistance
caused by the suppression of superconducting fluctuations is
observed in magnetic fields of up to 16 T.

Thus, experiments on granular superconductors revealed
a new experimental area of searching for the realization of the
bosonic scenario for the superconductor±insulator transition.
If in an insulator that is formed after the breakdown of
superconductivity there exist electron pairs localized on
defects, then in a strong magnetic field we can expect the
appearance of a negative magnetoresistance caused by the
destruction of these pairs.

1.5 Berezinskii±Kosterlitz±Thouless transition
Adistinguishing feature of two-dimensional superconducting
systems is the possible existence of a gas of fluctuations in the
form of spontaneously generated magnetic vortices at
temperatures smaller than the temperature Tc0 of the bulk
superconducting transition. A magnetic flux quantum

F0 � 2p�hc

2e
�10�

passes through each vortex. The factor 2 in the denominator
of expression (10) is preserved in order to emphasize that
the quantization is determined by charge carriers with a
charge 2e.

The vortices are generated by pairs with the oppositely
directed fields on the axis (the vortex±antivortex pairs) and in
a finite time they annihilate as a result of collisions. In a zero
magnetic field, the concentrations of vortices with opposite
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Figure 4. (a) Temperature dependence of the resistance of an In island film
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signs are equal, N� � Nÿ; they are determined by the
dynamic equilibrium between the processes of spontaneous
generation and annihilation. A decrease in temperature to
Tc � TBKT < Tc0 leads to a Berezinskii±Kosterlitz±Thouless
(BKT) transition [27, 28]. The generation of vortex pairs
ceases, and the concentration of vortices decreases sharply
and becomes exponentially small.

Thus, in a certain temperature range

Tc < T < Tc0 �11�

in two-dimensional superconductors, the vortices coexist with
Cooper pairs. The modulus of the order parameter, which is
the binding energyD of aCooper pair in the space between the
vortices, decreases to zero on the axis of the vortex; there is no
superconductivity near the axis of the vortex, and the
electrons are normal. The phase of the order parameter in
the space between the vortices fluctuates as a result of their
motion. Correspondingly, correlator (8) on the interval (11)
falls off exponentially, and at temperatures below the
temperature of the BKT transition �T < TBKT� it diminishes
according to a power law:

G�r� / rÿZ ; 0 < Z < 1 ; �12�

i.e., at large distances it tends to zero rather than to a finite
value. At large distances, a coherent state with the finite
correlator (8) is established at T � 0.

The vortices being considered as quasiparticles are
bosons. Therefore, it can be said that the presence of free
vortices-bosons leads to energy dissipation when current
flows, in spite of the presence of 2e-bosons (Cooper pairs).

There is a purely experimental problem in determining the
temperatures Tc0 and Tc from the curve of the resistive
transition. The resistance of the system in the temperature
range Tc < T < Tc0 was calculated in Ref. [29], and a
thorough experimental examination was carried out in
Ref. [30] using a superconducting transition in InÿO
amorphous films. It is seen from Fig. 6, in which the result
of such an analysis is given for one of the films, that the
temperatures Tc0 and Tc differ strongly: Tc0 lies in the high-
temperature part of the R�T � curve, so that R�Tc0� � 0:5RN,
while R�Tc� is less than the resistance RN of the film in the
normal state by several orders of magnitude. The relationship
between the resistances R�Tc0�, R�Tc�, and RN changes from

film to film, but even more they differ because of the fact that
in various laboratories the Tc0 and Tc temperatures are
usually determined differently. Therefore, when comparing
the results of experiments, it is sometimes more convenient to
use the ratio R�T �=RN for determining the characteristic
points in the resistance curve.

2. Microscopic approaches to the problem
of the superconductor±insulator transition

Among different theoretical models used for the description
of superconductor±insulator transitions, there is no one
unconditionally leading model, such as the BCS model
employed for the superconductivity itself. Approaching the
problem from different sides, the existing models emphasize
its different aspects and together create an integral picture,
demonstrating at the same time the existence of different
variants of the transition.

2.1 Fermionic mechanism
for the superconductivity suppression
As already mentioned in Section 1.4, the fermionic scenario
requires the vanishing of the modulus of the order parameter
with increasing the number of impurities in the system. For
the realization of the fermionic scenario, it is necessary to go
beyond the limits of the validity of the Anderson theorem [9],
namely, it is necessary to take into account the Coulomb
interaction between the electrons, together with the disorder.
The first idea in this area, which was formulated in Ref. [31],
was based on the use of formula (3). First, we shall assume
that the system is granular. With increasing impurity
concentration in a granule, the density of states at the Fermi
level is suppressed by the Coulomb interelectron interaction
due to the Aronov±Altshuler effect [32, 33] and, correspond-
ingly, the spacing (3) between the energy levels grows. In this
case, the critical size (4) of a granule increases, while at a fixed
size bSC the gap D and, therefore, the temperature Tc of the
superconducting transition decrease. It can be expected that
the temperature Tc will become zero at a certain critical
concentration of impurities. The same reasoning is also
applicable to a uniform system if the granular size is replaced
by the length of electron localization in the normal state [34±
36].

However, it turned out that the Coulomb interaction
suppresses the modulus of the order parameter in a com-
pletely different way, which is not related to the granular or
quasigranular character of the system. In the dirty limit, the
Coulomb interelectron interaction itself is renormalized [10],
and the processes of repulsion of electrons with opposite
momenta and spins, which lead to a low transfer of the
momentum, become stronger. The result of Ref. [10] resem-
bles the suppression of the density of states g0 at the Fermi
level in a normal dirty metal by the Coulomb interaction [32,
33], with the difference that in the superconductor it is the
temperatureTc that decreases with increasing disorder, rather
than the density of states g0 at the Fermi level.

The effect of Tc reduction as a result of a renormalization
of the Coulomb interaction was known earlier [37±39] in the
form of a weak correction to the superconducting transition
temperature. For example, in the two-dimensional case we
have

Tc � Tc0

�
1ÿ 1

12p2y
ln3
�

�h

Tct

��
; �13�

10ÿ7
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Figure 6. Temperature Tc0 at which an equilibrium concentration of

Cooper pairs appears, and the temperature Tc of the BKT transition in

an InÿO film 100 A
�
thick [30]. R& is the resistance per square (resistivity

of a two-dimensional system).
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where y is the dimensionless conductance:

y � �h

e 2R&
; �14�

R& is the resistance per square (resistivity of a two-
dimensional system, or resistivity per square), and t is the
relaxation time of the momentum in the normal state.
Formally, expression (13) already reveals the possibility of
vanishing Tc with increasing disorder. However, the extra-
polation over such a large distance cannot serve as a serious
argument.

The expression for the critical temperature Tc of a two-
dimensional system that is valid at low temperatures,
Tc 5Tc0, has been obtained [40] using the renormalization-
group analysis (see also papers [8, 11]):

Tc

Tc0
� exp

�
ÿ 1

g

��
gÿ r=4� �r=2�1=2
gÿ r=4ÿ �r=2�1=2

�1= ����
2r
p

;

�15�

g �
�
ln

Tc0t
�h

�ÿ1
< 0 ; r � e 2

2p2�h
R& � 1

2p2y
:

Figure 7 displays experimental data for quasiuniform
films of an amorphous Mo79Ge21 alloy with various thick-
nesses and, consequently, with different resistances R& [41,
42]. The solid curve was constructed inRef. [40] using formula
(15) on the assumption that ln ��h=Tc0t� � 8:2.

Thus, the theory correctly describes in the two-dimen-
sional case the decrease in the temperature of the super-
conducting transition under the disorder effect. For the three-
dimensional case, there are no exact answers, but we can
expect the same qualitative picture. Depending on which of
the situations, i.e., Anderson localization in the normal state
or vanishing of the superconducting transition temperature,
occurs earlier, one of the three phase diagrams presented in
Fig. 2 is realized.

The theory developed in Ref. [40] corresponds to the use
of a mean field concept, i.e., an order parameter that is
independent of the coordinates. In recent years, it has been
revealed, however, that the possible inhomogeneity of the
order parameter both with and without allowance for the
Coulomb interaction effect can by itself lead to the loss of
macroscopic coherence. In the vicinity of the point of the

quantum phase transition, where the conductance (14) is on
the order of unity, mesoscopic effects caused by a nonlocal
interference of electron waves scattered by impurities can
become essential [43]. As a result, the originally uniform
system can become nonuniform upon transition. Super-
conducting droplets can appear in it.

This possibility is realized in the two-dimensional case if
the Coulomb interelectron interaction is taken into account,
i.e., when using the model [40] beyond the framework of the
mean-field approximation [44]. The mesoscopic effects in a
wide temperature range of T > Tc generate a nonuniform
state of the system with superconducting-phase droplets
embedded into the normal regions. According to Ref. [44],
the temperature interval dTc in which the superconducting
droplets can appear is specified by the relationship

dTc

Tc
' 0:4p2r 2

1ÿ r=rc
; �16�

where rc is the critical value of the dimensionless resistivity at
which Tc calculated according to formula (15) becomes zero.
As can be seen from formula (16), the width of the region of
the nonuniform state can be on the order of Tc.

2.2 Model of a granular superconductor
The first analytically solvable model with a phase transition
to the insulating state was constructed by Efetov [45] for a
granular superconductor with a superconducting gap D, a
granule size b, and the frequency tb of electron hopping
between adjacent granules. It was assumed that tb falls in
the range assigned by the following inequalities:

de5
�h

tb
5D �17�

where the energy �h=tb is less than the superconducting
gap, but more than the spacing between the energy levels
of the dimensional quantization in the granules. The left-
hand inequality means that in the absence of super-
conducting interaction the localization effects can be
neglected and the granular material can be considered as
a normal metal.

The granule size b is assumed to be smaller than the
coherence length x. The left-hand inequality (17) chosen as
the bound from below for the size b is more strict than the
above-considered condition (4). As a result, the following
interval was assumed for b:�

�hg0
tb

�ÿ1=3
< b < x : �18�

The effective Hamiltonian describing the system is written
out as follows:

Heff �
X
i j

1

2
Bi j r̂i r̂j �

X
i j

Ji j
�
1ÿ cos �ji ÿ jj�

�
;
�19�

r̂i � ÿi q
qji

:

Here, r̂i are the operators of the number of Cooper pairs in
the ith granule (with the integers as the eigenvalues), and the
quantities Bi j at low temperatures are proportional to the
elements of the matrix that is inverse to the capacitance
matrix. On the order of magnitude, for example, for granules
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Figure 7. Suppression of superconductivity by a disorder in amorphous

Mo79Ge21 films [40]. Circles correspond to experimental data taken from

Refs [41, 42], and the solid curve was constructed from formula (15).

8 V F Gantmakher, V T Dolgopolov Physics ±Uspekhi 53 (1)



with thin interlayers of thickness ~b, we have

Bi j � e 2

b

~b

k0b
; �20�

where k0 is the dielectric constant of the insulating interlayer.
The first term under the summation sign in Hamiltonian (19)
describes the electrostatic energy arising upon the generation
of pairs on the granules. The second term contains the
Josephson energy Ji j, which is nonzero only for the nearest
neighbors and is expressed through the normal contact
resistance R n

i j as

Ji j � p
4

�
�h=e 2

R n
i j

�
D�T � : �21�

It is assumed for simplicity that all the granules and the
insulating interlayers are identical and arranged regularly, so
that Bi j and Ji j depend only on the difference jiÿ j j.

The solution was obtained by the self-consistent field
method. To this end, the interaction in the Hamiltonian was
replaced by a mean effective field:

cos �ji ÿ jj� ! hcosjii cosjj : �22�

The phase-transition point is found from the condition of
phase coherence in different granules, i.e., from the condition
that hcosjii is nonzero in the equation of self-consistency of
the solution to the problem with Hamiltonian (19). In this
way, a critical value is obtained of the ratio between the
Josephson and Coulomb energies, at which a phase transition
at a zero temperature occurs. In the simplest case, one has

Jic �
�X

j

Ji j

�
c

� 1

2
Bii�0� : �23�

For Ji > Jic, a macroscopic superconducting state is
realized in the granular superconductor. In order to under-
stand the properties of the incoherent phase in which
hcosjii � 0, it is necessary to solve the kinetic problem of
the response of a granular superconductor in the incoherent
state to a static electric field for

Ji 5 Jic : �24�

The current between separate granules is equal to the sum of
normal and Josephson currents. Owing to the first of these
terms, the conductivity at the zero frequency proves to be
finite at a nonzero temperature and, to an accuracy of a
numerical coefficient, is expressed in the form

s�0� � Rÿ1 exp
�
ÿD
T

�
: �25�

The exponential activation dependence on the temperature
indicates that the system resides in the insulating state.

The case of a finite temperature is rather interesting. In
this case, for ~b5 b it is necessary to take into account the
contribution from the off-diagonal elements Bi j, but this
means the possibility of the appearance of charges in two
adjacent granules rather than in only one granule. The critical
value of the Josephson energy is additionally increased under
these conditions. However, with increasing temperature the
spaced charges will be screened by the normal excitations of

adjacent granules and the critical value of the Josephson
energy will decrease. Irrespective of this, an increase in
temperature leads to an increase in the spread of the phases
of separate granules. The resulting dependence of the super-
conducting transition temperature on the Josephson energy is
illustrated qualitatively in Fig. 8. This dependence indicates
that under specific conditions the granular superconductor
can pass into an insulating state upon a decrease in
temperature. This transition is called reentrant.

The theory of reentrant transitions was developed in
many studies (see, e.g., Refs [46±48]), mainly within the
framework of the ideas presented above. Experimentally,
the reentrant transitions are manifested in the fact that the
rapid decrease in resistance with decreasing temperature in
the process of the superconducting transition is changed by its
rapid growth. The reentrant transition is usually considered
to be a specific property of granular superconductors.
Frequently, the presence of such a transition was assumed to
indicate that the sample had a granular structure and served
as a criterion for the selection and classification of samples.
However, as we shall see in Section 2.5, a reentrant transition
in the presence of a magnetic field can occur even in the
absence of a granular structure.

The upper branch of the phase diagram in Fig. 8 is also
very informative. It shows that the temperature of the
superconducting transition can decrease when approaching
the critical value of the control parameter not only in a
uniformly disordered superconductor but also in a granular
superconductor with granules of a small size (18), if some
additional conditions are fulfilled [in particular, if inequalities
(17) are valid and the interlayers between the granules are
relatively narrow, ~b5 b].

Thus, Efetov [45] has constructed a strict microscopic
theory of the superconductor±insulator transition for a single
specific case of a granular superconductor for which inequal-
ities (17) and (18) are fulfilled. Some results of this theorywere
later obtained based on phenomenological considerations in
Ref. [49].

The model of the transition constructed in Ref. [45]
occupies an intermediate place between the fermionic and
bosonic scenarios. On the one hand, thismodel proceeds from
the BCS theory and deals exclusively with Cooper pairing. On
the other hand, because of the coordinate dependence of the
order-parameter modulus, which is due to the very formula-
tion of the problem (difference in the magnitude of D inside
and outside the granules), this model allows the existence of
regions with D 6� 0 for temperatures T > Tc.

Tc0

T

Tc�J�

JcJmin J�0�

I S

Figure 8. Phase diagram on the �J;T � plane, corresponding to the

possibility of the occurrence of a reentrant superconductor±insulator

transition with decreasing temperature [45].
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Note in conclusion that Efetov's model does not require
the presence of disorder in the granular system (if the very
existence of the granules is not considered as disorder) for the
implementation of the transition. There is no doubt that the
existence of disorder does not prevent the transition of a
superconductor to an insulating state, but neither is it a
driving force for such a transition: the latter could occur
even on a regular lattice of granules. In this respect, the
transition considered is more likely analogous to a Mott±
Hubbard metal±insulator transition than to an Anderson
transition.

2.3 Bose±Einstein condensation of a bosonic gas
As was already noted above, in some cases it is more
convenient to employ the model of Bose±Einstein condensa-
tion in a gas of bosons for describing the behavior of a
superconductor. Recall that according to the statistics of Bose
particles at a temperature lower than a certain critical value, a
macroscopic number of particles find themselves at the lower
quantum level and form the so-called Bose condensate. In the
general case, the lower quantum level is not separated by a
spectral gap from the excited states of the system. At a zero
temperature, all Bose particles prove to be in the ground state.
The assertion about the existence of a Bose condensate is
correct both for a gas of charged Bose particles [50], i.e.,
particles with interaction, and for a gas of noninteracting
Bose particles which are scattered by the short-range field of
impurities [51]. The presence of a Bose condensate by itself by
no means implies that the particles will demonstrate super-
fluidity (or ideal conductivity in the case of a gas of charged
particles). The problem of the dynamic low-frequency
response of the interacting gas of Bose particles in the field
of impurities was posed and solved by Gold [52, 53] for two
concrete cases: a Bose gas with a weak repulsion in the field of
neutral impurities, and a charged Bose gas in the field of
charged impurities.

The problem was set up as follows. The dependence of the
kinetic energy of bosons on the momentum is assumed to be
parabolic, e�k� � k 2=2m, and the Hamiltonian comprises
three terms:

H � H0 �HI �HD : �26�

The first term describes the kinetic energy of free bosons:

H0 �
X
k

e�k�a�k ak ; �27�

where the operators a�k and ak correspond, as usual, to the
creation and annihilation of a boson with a momentum k.
The second term describes the interaction between the
bosons:

HI � 1

2

X
q

r�q�Vqr��q� ; �28�

where Vq is the Fourier component of the interaction
potential, and r�q� and r��q� are the operators of the
density fluctuations: r�q� �Pk a

�
kÿq=2ak�q=2 and r��q� �P

k a
�
k�q=2 akÿq=2. The last term in sum (26) corresponds to

the interaction of bosons with impurities:

HD �
X
q

Uqr��q� ; �29�

whereUq is the Fourier component of the scattering potential.

It is necessary to calculate the dynamic response of a
systemwith such aHamiltonian. Let us first examine aweakly
interacting gas of repulsive Bose particles having the radius of
interaction qÿ10 with the impurities:

Vq � V ;

jUqj2

� � 6p2qÿ20 U 2y�q0 ÿ q� ;
�30�

y�x� � 1 ; x5 0 ;

y�x� � 0 ; x < 0 ;

where V and U are the constants. According to Ref. [54], the
gas of interacting particles in question possesses a gapless
spectrum of excitations, and the introduction of scatterers
with a small interaction radius does not lead to the critical
behavior of spectral characteristics. Nevertheless, the kinetic
characteristics of system (26)±(30) radically change, depend-
ing on the relationship between the scale of the interparticle
interaction and the scattering potential. For the formal
description of this relationship, a dimensionless parameter A
was introduced in Ref. [52]:

A � 3n 2
X
q


jUqj2
�ÿ
ĝ�q��2 ; �31�

where n is the density of bosons, and ĝ�q� is the compressi-
bility of the interacting boson gas, which can be expressed
through Vq. An increase in disorder brings about an increase
in A.

It turned out that the transport properties of the system
radically change at A � 1. The last condition always
corresponds to an increase in the critical value of the effective
scattering potential with strengthening interaction between
the bosons, and/or with increasing the density of bosons; this
fact corresponds to the concept of the collective wave
function of the Bose condensate.

For the active response of the system at low frequencies,
the following result was obtained:

s 0�o� � �1ÿ A� d�o� ; A < 1 ;
0 ; A > 1 ;

�
�32�

where d�o� is the d function. For A < 1, the system possesses
an infinite active component of conductivity at o � 0 and is
superfluid. At A � 1, a quantum phase transition from the
superfluid state to the state of localized bosons (Bose glass)
occurs.

An analogous behavior is characteristic of the gas of
charged bosons in the field of charged impurities. The
corresponding harmonics of the potentials take on the form

Vq � 4pe 2

q 2
;


jUqj2
� � N

�
4pe 2

q 2

�2

; �33�

where N is the number density of scattering centers. For the
system to be stable, it is necessary to assume the existence of a
uniform background which compensates for the charge of
bosons. In expression (31), not only the potential of
interaction with the scatterers but also the compressibility
ĝ�q� is changed. The ground state proves to be separated by a
gap from the excited states; however, the main result
described by expressions (31) and (32) remains unaltered.

Bose condensation means the existence of superconduc-
tivity with a London penetration depth l20 � mc 2=4pn (where
m and n are the effective mass and the density of bosons,
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respectively) and with the conductivity s�o� as o! 0:

s�o� � i
c 2

4p
1

l2
1

o
; l � l0

1������������
1ÿ A
p : �34�

The occurrence of a transition follows from the divergence of
l as A! 1.

Now, the condition A � 1 connects the concentrations of
the scattering impurities �N� and the bosons �n�. At the
critical concentration of impurities Nc, namely

Nc / n 5=4 ; �35�

a transition from the state of an ideal conductor to an
insulating state occurs.

The Efetov model, which was discussed in Section 2.2,
allows a periodic arrangement of granules, so that the
transition in this model resembles the Mott transition. In the
Gold model, an important feature is precisely the chaotic
nature of the arrangement of impurities, and the transition
from the superconducting to the insulating state rather
resembles the Anderson transition to the Bose-glass phase.
However, in the case of a bosonic system it is impossible to
assume the complete absence of interaction, unlike the case of
the Anderson transition in the electron system. The need to
take into account the interaction between the bosons can be
explained as follows.

Let us assume that there is only one impurity and only one
localized state near it. In the absence of interaction, all the
bosons will be condensed into this localized state, i.e., we
obtain an insulator. It can be said that the superconducting
state of noninteracting bosons is unstable with respect to an
arbitrarily weak random potential and that the interaction
between bosons stabilizes superconductivity. Hence, relation-
ship (35) appears: a decrease in the boson concentration
weakens interaction and, therefore, the critical concentration
of impurities decreases, as well.

2.4 Bosons at lattice sites
Fisher et al. [55] suggested in their study a model which
partially inherits properties of the two previously considered
models [45, 52]. The authors of Ref. [55] investigated the
properties of a system of bosons arranged at sites in the
lattice, which possess weak repulsion and are characterized by
a finite probability of hopping between the sites and by a
chaotically changing binding energy at a site. This model is
especially interesting for us, since a general scaling scheme for
a superconductor±insulator transition was constructed on the
basis of ideas developed in Ref. [55].

The Hamiltonian of the system in question takes on the
following form

Ĥ � Ĥ0 � Ĥ1 ;

Ĥ0 � ÿ
X
i

�ÿJ0 � m� dm�n̂i � 1

2

X
i

Vn̂i�n̂i ÿ 1� ; �36�

Ĥ1 � ÿ 1

2

X
i j

Ji j�F̂�i F̂j �H:c:� ;

where n̂i is the operator of the number of particles at site i; Ji j
is proportional to the frequency of hoppings between the sites
i and j; the sum

P
j Ji j � J0 is assumed to be identical for all

the sites; m is the common chemical potential; V is the

interaction energy of two bosons at one site, and H.c. denotes
the Hermitian conjugate. Randomness in the system is
introduced with the aid of variations dmi in the chemical
potential from site to site (an average of dmi over the system is
equal to zero). The field operators of the bosonic field, F̂�i
and F̂j, in the Hamiltonian Ĥ1 can be expressed through the
operators of creation and annihilation of particles, a�k and ak,
that were used in Hamiltonian (27):

F̂i � F̂�ri� �
X
k

ck�ri�ak ; F̂�i �
X
k

c �k �ri�a�k ; �37�

where ck�r� is the wave function of a particle in the state with
a wave vector k. The field operators can be considered as the
operators of particle annihilation or creation at a given point
of space; their commutator is �F̂i; F̂�j � � di j, and F̂�i F̂i � n̂i.

Let us first consider a system without disorder and
construct a phase diagram on the plane �J; m� (Fig. 9a). To
start, we take the case of Ji j � 0. Let the potential m be
determined by the external thermostat and let it be able to
change continuously. The number of bosons n at all the sites is
one and the same, since all the sites are equivalent, and is an
integer. The number n should be found by minimizing the
energy of bosons residing at a single site:

e�n� � ÿmn� 1

2
Vn�nÿ 1� : �38�

Since n is discrete, each value of n is realized on a certain
interval of m values, namely, nÿ 1 < m=V < n. At the
boundary of this interval, the values of the energy (38) for
two neighboring values of n become the same: at m � nV, we
have

e�n� � e�n� 1� � ÿV

2
n�n� 1� : �39�

The role of an elementary excitation in the system is
played by an extra or missing boson at one of the sites. The
energy required to add a boson to the system or remove it
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Figure 9. Phase diagrams at T � 0 for a system of bosons interacting at the

sites: (a) in the absence of disorder, and (b) in the presence of disorder.

�MI�n is a Mott insulator with n bosons at each site; SF is a superfluid

phase. Arrows indicate transitions from the state of the Mott insulator to

the superfluid phase: (arrow 1) transitions with a change in the density of

bosons; (arrow 2) transitions at the constant density of bosons. BG is a

Bose glass with a different number of bosons at different sites. Arrow 3

indicates the transition from the Bose insulator to the superfluid phase

(taken from Ref. [51]).
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from the system depends on the position of the chemical
potential m relative to the boundaries of the interval. If m is
fixed at a level

m
V
� nÿ 1

2
� a ; ÿ 1

2
< a <

1

2
;

then, to add a boson to the system or remove it from the
system, an energy on the order of

de� � �V
�
1

2
� a
�

�40�

is required
It was assumed above that the interaction with the

thermostat ensures the possibility of a smooth change in m
and that n, considered as an average number of bosons at a
site, can assume only discrete integer values. If, on the
contrary, we can smoothly vary the total number of bosons
in the system, then n changes continuously, and the chemical
potential takes only discrete values:

m � �n�V ; �41�

where �n� is the integer part of the number n, and the number
of bosons is equal to �n� at some sites, and to �n� � 1 at other
sites. According to formula (39), the energies e��n�� and
e��n� � 1� are equal at values of the chemical potential equal
to those defined by formula (41). In Section 5.2, we shall
consider the experimental realization of precisely such a case.

Now, let us return to the systemwith smoothly changing m
and integer n, and include weak hoppings J > 0 into the
examination, i.e., require that, during the determination of
the equilibrium state, the kinetic energy be taken into
account, as well. This will influence the state of the system
only if J proves to be larger than at least one of the energies
specified in estimate (40). In particular, at integer values of
m=V this will occur at arbitrarily small J, and the critical value
J � Jc will be maximum at half-integer m=V. Hence, the phase
plane �J; m� will be divided into two regions (Fig. 9a). To the
left of the solid line, in the interval of the values of the
chemical potential,

V�nÿ 1� < m < Vn ; �42�

the system resides in the state of an insulator with an identical
number n of bosons at all sites. Since there is no disorder
whatever in the system, this insulator is called the Mott
insulator (MI). Thus, to the left of the solid line we obtained
a set of Mott insulators (MI)n that differ in the number of
bosons n at the sites.

To the right of the phase boundary, it is possible to
introduce a boson into the system by supplying it only with
kinetic energy J, without assigning it to a specific site. Such
bosons will be delocalized. They can freely move around the
system, and at T � 0 they, through the Bose condensation,
provide superfluidity.

On the upper part of the boundary of an (MI)n region, for
m=V > n, the potential energy required for an additional
boson to appear at some site is compensated for by its kinetic
energy. Therefore, the additional boson can freely jump over
sites and go into the Bose condensate. For any point m=V < n
of the lower part of the phase boundary, the same reasoning is
valid for the hole (one boson missing from a site). After the
intersection of the boundary, the number of bosons ceases to
be fixed and an integer, and begins smoothly changing as m

varies. In contrast to these transitions caused by a change in
the density of bosons, at the central point of the boundary,
m=V � n, a transition at a constant density can occur, when
the kinetic energy of the bosons grows so that they obtain the
possibility of moving across the sites, overcoming intrasite
repulsion.

Now, let us introduce disorder into the system of bosons,
suggesting that dmi are distributed uniformly inside the
interval �ÿD;D�, with D < V=2. Let us again first exclude
the hoppings between the sites, assuming J � 0. Then, we are
obliged tominimize the energy for each of the sites separately:

e�ni� � ÿ�m� dmi�ni �
1

2
Vni�ni ÿ 1� : �43�

If we `smear' the quantity m in inequality (42) over an interval
�D, then, to retain condition (42), we should correspondingly
shift the boundaries of the interval:

V�nÿ 1� � D < mi � m� dmi < Vnÿ D : �44�

As a result, we obtain the diagram presented in Fig. 9b: the
ordinate axis is divided into intervals centered at half-integral
values of m=V, inside which, as before, an equal number of
bosons is located at each of the sites. Inside these intervals, the
Mott insulator is retained. On the remaining part of the
ordinate axis, disorder prevails and the number of bosons at
the sites proves to be different. Here, we are dealing with an
insulator of another typeÐa Bose glass.

The introduction of a finite probability of a boson
hopping between the sites, J 6� 0, leads to the emergence of a
Bose-glass state from the ordinate axis into the plane, so that
the transition to the superfluid state occurs from the
disordered insulator (arrow 3 in Fig. 9b). Moreover, in the
case of a strong disorder, D > V=2, the Mott-insulator
regions disappear at all.

The above qualitative picture of phase transitions in the
system of bosons on a lattice of sites can naturally be extended
to insulator±superconductor transitions if we assume the
bosons to be charged. The transitions to the superconducting
state can occur both upon a change in the concentration n
with the chemical potential as the control parameter,
dx � mÿ mc, and upon an increase in the hopping frequency,
dx � Jÿ Jc. In the above-considered model, the transitions
can occur both from the MI state and from the BG state.
However, since we are discussing the superconductivity in
Fermi systems, the existence of the Bose-glass state, i.e., of
localized pairs, should first be proved.

2.5 Superconducting fluctuations
in a strong magnetic field in the framework
of the Bardeen±Cooper±Schrieffer model
In the BCS model, Cooper pairs appear only via the
fluctuation mechanism at temperatures exceeding Tc or, for
T < Tc, in the magnetic field with B > Bc2�T �. Nevertheless,
their effect on conductivity is considerable. We here are first
interested in the question of whether there is an anomalous
component of this influence, i.e., is it possible to observe, in a
certain domain of parameters, an increase in resistance under
the effect of superconducting fluctuations, as occurs in
granular superconductors [25, 26, 45]?

In the plane �T;B�, the region of existence of fluctuations
is that where B > Bc2�T �, including

T > Tc�B � 0� � Tc0 at B � 0 : �45�
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The fluctuations in a zero magnetic field, i.e., in region (45),
were studied sufficiently long ago [56±58]; however, at low
temperatures,

T5Tc0 ; B > Bc0 ; �46�
such studies were possible to conduct only comparatively
recently [59], and only for two-dimensional systems (see also
monograph [60]). A positive answer to the question that is of
interest for us can be found in the results of Ref. [59] in the
dirty limit Tc0t5 1 (where t is the mean free time) for two-
dimensional superconductors at low temperatures in fields
near Bc2�0� in the region

t � T

Tc0
5 1 ; b�T � � Bÿ Bc2�T �

Bc2�0� 5 1 : �47�

Three forms of quantum corrections exist for conductiv-
ity, which are caused by superconducting fluctuations (they
are also called corrections in the Cooper channel). These are
the Aslamazov±Larkin correction caused by the contribution
to the conductivity from fluctuation-induced pairs; theMaki±
Thompson correction connected with the coherent scattering
of paired electrons by impurities, and the correction caused
by a decrease in the density of states of normal electrons at the
Fermi level as a result of the appearance of Cooper pairs [60].
In region (47), the contributions from all these corrections are
of the same order. The resulting correction ds to the
conductivity calculated in the first (single-loop) approxima-
tion in this region takes on the form

ds � 2e 2

3p2�h

�
ÿ ln

r

b
ÿ 3

2r
� c�r� � 4

ÿ
rc 0�r� ÿ 1

��
; �48�

where c�x� is the logarithmic derivative of the G function,
r � �1=2g 0��b=t�, and g 0 � exp g � 1:781 is expressed through
the Euler constant g.

Formula (48) is illustrated in Fig. 10. The most important
thing, from the viewpoint of the problem that is of interest for
us, is that the corrections to the conductivity arising as a result
of superconducting fluctuations can be not only positive but
also negative. In the low-temperature limit of t5 b in fields
B > Bc2�0�, formula (48) acquires the form

ds � 2e 2

3p2�h
ln b : �49�

The correction to the conductivity is negative and becomes
quite large as b! 0 (curve t � 0 in Fig. 10a).

The curves corresponding to very small positive b in
Fig. 10b describe a reentrant transition, in spite of the absence
of the granular structure in the superconductor (cf. Fig. 8).
These curves are first held up against the curve b � 0, increase
alongwith it, and then return to the level of ds � 0, so that the
resistance first decreases and then returns to the level
corresponding to the resistance in the normal state.

The calculation of fluctuation corrections has been done
in the dirty limit of the BCS theory. Although the dirty limit
means the presence of disorder, so that the mean free path is
assumed to be less than the coherence length, both in the BCS
theory and in Ref. [59] a normal metal±superconductor
transition is considered. The curve Bc2�T � in the phase plane
�T;B�, used in paper [59] (presented in Fig. 11), implies just
such a transition. The curve t � 0 inFig. 10a demonstrates the
behavior of the fluctuation correction upon a decrease in the
magnetic field strength, i.e., upon motion downward along
the vertical arrow on the phase plane in Fig. 11. It turned out
that the superconducting fluctuations in this region lead to an
increase in the resistance. Strictly speaking, the results of
calculations [59] are valid only in the region where Ds5 s.
However, based on the results of analogous calculations in
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Figure 10. Fluctuation correction (48) to the conductivity of a two-dimensional dirty superconductor as a function of (a) magnetic field at four different

temperatures, and (b) temperature at five different strengths of the magnetic field [59]. Thick curves are the separatrices of both families of the curves.

M
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b � 0

t � 0
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S

Figure 11. Phase plane �T;B� for a superconductor±dirty normal metal

transition. The region of increasing resistance due to superconductor

fluctuations is hatched (according to the results of calculations [59]).

Arrows show different trajectories in the phase plane corresponding to

different curves in Fig. 10.
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the theory of normal metals, the weak localization is assumed
to precede the strong localization [61]. If we, analogously to
the above case, extend the tendency of an increase in
resistance onto the region of Ds � s, we shall see that now
the transition to the superconducting state upon a decrease in
the field strength is preceded by the transformation of the
normal metal into an insulator (or, at least, into a high-
resistance state). In Fig. 11, the region in which this
transformation occurs is hatched. As can be seen from the
curves b > 0 in Fig. 10b, this region is very narrow.

Notice that the conductivity in the vicinity of the critical
point �b � 0, t � 0� depends on the way we approach this
point. According to the curve b � 0 in Fig. 10b, the
conductivity s tends to infinity as t tends to zero. This
means that along this path in the phase plane, which is
arbitrarily indicated in Fig. 11 by the middle horizontal
arrow, the system approaches a superconducting state.

As we shall see when examining experiments on films of
different materials in Sections 4.1 and 4.2, an important
factor, which is established quite clearly, is the character of
the slope of the separatrix RBc

�T � of the family of curves
RB�T � in the limit T! 0 (in experiment, it is usually the
resistivity that is measured rather than the conductivity). In
the calculation performed in paper [59], such a separatrix is
the curve b � 0 in Fig. 10b:

s
ÿ
T; b�0� � 0

� � s
ÿ
T;B � Bc2�0�

�!1 as T! 0 : �50�

In the region where the results of calculation [59] are valid, the
derivative q�ds�=qt of this curve grows in absolute value with
decreasing temperature.

The intersection of the curves in Fig. 10b at low
temperatures indicates the presence of a negative magne-
toresistance. It turns out that the increase in resistance as a
result of superconducting fluctuations and the presence of a
negative magnetoresistance are characteristic not only of
granular superconductors (see Fig. 5) but also of dirty
quasi-homogeneous superconductors, and inequality (6) is
not a fundamental limitation for the occurrence of these
effects.

2.6 Fermions at lattice sites. Numerical models
Within the framework of the fermionic model, the role of the
superconducting interaction in the presence of disorder was
also studied by numerical methods. In Refs [62, 63], the
authors investigated the behavior of a system of N fermions
with spin s � �1=2 on a planar lattice with a model
Hamiltonian

H � ÿt
X
hiji;s

c
y
iscjs �

X
i; s

�Wi ÿ m�nis �U
X
i

ni"ni# ; �51�

where the probability t of an electron hopping to a nearest
adjacent site is assumed as the natural scale of all energies; c

y
is

and cis are the operators of creation and annihilation of a
fermion, respectively; the operator nis � c

y
iscis corresponds to

the occupation numbers of states, and the representation of
the subscripts i and j in the vector form implies that the
summation is extended over the lattice. The energy of
electrons at the sites, ei �Wi ÿ m, takes on random values
on the interval �ÿW=2;W=2�, where m is the chemical
potential, and the Hubbard energy is assumed to be
negative, U < 0, which should reflect the presence of super-
conducting interaction.

The basic calculations were conducted on a lattice L2 �
24�24. The total number of electrons hniL2 with each spin
direction was varied on the interval 0:24 hni4 0:875.

Naturally, the number of electrons at a concrete site
differs from hni because of the presence of the random
potential Wi. It turned out that with increasing disorder
(increase inW ) the amplitude of the local order parameter,

D�r� / hci"ci#i ;

also suffered strong fluctuations and, at sufficiently large W,
it was found that D � 0 on a significant part of the lattice; i.e.,
the superconductivity disappeared at all. Just as with the
allowance for the Coulomb interaction [44], the nominally
spatially uniform but strongly disordered system becomes
similar to a granular superconductor. The appearance of a
spatial modulation of the order parameter is accompanied by
increasing phase fluctuations, and all these factors taken in
totality lead to the transition from a superconductor to an
insulator. Nevertheless, the single-particle gap in the density
of states is still long retained. Its evolution at the initial stage
of the introduction of disorder is shown in Fig. 12. As can be
seen from this figure, it is the coherent peaks that prove to be
most sensitive to the random potential.

The results of Refs [62, 63] can be directly compared with
experimental data. First of all, this relates to the dispersion of
the local values of the superconducting gap. According to the
calculated results, the occurrence of disorder on the scale of
the spacing between the adjacent sites (the values ofWi are in
no way correlated) in the presence of a superconducting
attraction leads to the appearance of a macroscopically
inhomogeneous structure resembling a granular supercon-
ductor. To reveal this inhomogeneity, it was necessary to
place the tunnel microscope into a dilution refrigerator. The
first similar experiments appeared in 2008 (see Sections 6.2
and 6.4).

A similar problem on a three-dimensional lattice with L3

sites was solved in Ref. [64], where the sameHamiltonian (51)
was investigated, but the problem was formulated somewhat
differently. At U � 0, the Hamiltonian (51) is reduced to the
single-particle Andersonmodel with ametal±insulator transi-
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Figure 12.Density g�e� of single-particle states on a 24� 24 lattice at three

levels of disorderW=t and an average electron density hni � 0:875 [63].
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tion at W=t �Wc=t � 16:5. The influence of the mutual
attraction of electrons at a site on this transition was studied
for U < 0.

The occupation number of the lattice sites with electrons,
hni, was assumed to be about 1=4. The localization proper-
ties of the model with attraction �U=t � ÿ4� were deter-
mined from the behavior of an additional pair of electrons
introduced into the system at the Fermi level. In the case of a
small disorder, W=t � 2, the electrons introduced were
uniformly distributed over the lattice (Fig. 13a). However,
a localization of the pair occurred already at W=t � 7,
although the disorder remained substantially smaller than
that critical for the Anderson model, W <Wc (Fig. 13b).
Thus, this numerical experiment clearly demonstrates the
same tendency that is manifested through an analytical
investigation of different models: pairing of electrons favors
their localization.

3. Scaling hypothesis

3.1 General theory of quantum phase transitions
as applied to superconducting transitions
The general theory of quantum phase transitions [65, 66] is
constructed similarly to the theory of thermodynamic phase
transitions, but with an inclusion of terms in the partition
function Z that reflect the quantum properties of the system.
It is desirable that the sum Z, in spite of an increase in the
number of terms, could, as before, be considered as the
partition function of a certain hypothetical classical system.
For this to be the case, it is necessary to assume that the
dimensionality D of the hypothetical system exceeds the real
three-dimensional dimensionality d of the system; this is
achieved as a result of adding an imaginary time subspace.
Thus, the theory of quantum transitions is constructed by
mapping a given quantum system in a d-dimensional space
onto a hypothetical classical system in the D-dimensional
space in such a way that the axes of the imaginary time
subspace at a temperature T have a finite length equal to i�h=T
(in more detail, the physical scheme that serves as the basis of
this mapping can be found in reviews [7] or [65]).

According to the scaling hypothesis [67], all physical
quantities for an equilibrium system in the vicinity of a
classical phase transition have a singular part which shows a
power law dependence on some variable x with a dimension-
ality of length. In the D-dimensional space, the Dÿ d axes of
the imaginary time subspace are nonequivalent to the original

spatial axes. Therefore, apart from the correlation length x in
the subspace of dimensionality d, we are obliged to introduce
the length xj along the additional axes:

xj / x z : �52�

This length has a dimensionality of inverse energy and cannot
be more than the size i�h=T of the space in the appropriate
direction:

xj 4
i�h

T
: �53�

The volume element of this fictitious space for the hypo-
thetical classical system can be written out as

�dx�d�dxj� / �dx�d�z ; i:e:; D � z� d :

The correlation length x, in turn, depends on the proximity to
the phase transition point, which is determined by the value of
the control parameter x:

x / �dx�ÿn ; �54�

and it tends to infinity at the very transition point. The
numbers z in formula (52) and n in formula (54) are called
critical exponents.

The quantity Lj with a dimensionality of length can be
put into correspondence with the inverse energy xj, by
writing, from the dimensionality considerations based on
formula (52), that

Lj / x 1=z
j : �55�

This quantity is called the dephasing length. Upon approach-
ing the transition point, an increase is observed in not only x,
but also in xj and Lj. However, the last two quantities are
bounded in view of inequality (53). As dx! 0 and for
T � const 6� 0, the dephasing length Lj ceases to grow at a
certain dx0�T �. A region is formed in which x depends only on
dx, and Lj, only on T:

x � x�dx� / �dx�ÿn ; Lj � Lj�T � / Tÿ1=z : �56�

This region is called critical.
Let us examine the application of the above-formulated

general postulates of the theoretical scheme using the concrete
example of a system of bosons, whichwas discussed in Section
2.4. The physical quantities characterizing a boson system can
contain both a singular part, which depends on x and xj, and
a regular part, which is independent of x and xj [55]. As an
example, we take the free-energy density of the quantum
system, which corresponds to the free-energy density of an
equivalent classical system. At T � 0, it is defined as

f �m; J� � lim
T! 0

lim
N!1

�
N

T

�ÿ1
lnZ ; �57�

where m is the chemical potential,N is the number of particles
in the system, and J is the frequency of the boson hoppings
between the sites.

The singular part fs of the free-energy density builds up on
the scale of the correlation length. Therefore, one has

fs / xÿ�d�z� / �dx�n�d�z� : �58�
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Figure 13. Projections onto the �x; y� plane for the probability of the

distribution of an extra electron pair introduced at the Fermi level into a

lattice of 6� 6� 6 sites at the same attraction energy in the Hubbard

model U=t � ÿ4, but different levels of disorder: (a) W=t � 2, and

(b) W=t � 7 [64]. In the Anderson model without attraction �U � 0�, the
critical level of disorder on such a lattice isWc=t � 16:5.
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All coordinate axes of the space with dimensionality D
are, in principle, bounded, and expression (58) for fs can
contain, besides the dimensional coefficient, an arbitrary
function of the ratio of the correlation lengths to the
appropriate sizes. For the length xj, the scale is i�h=T, while
for the length x, this is the smaller of the two valuesÐ the size
of the sample and the dephasing length:

fs � �dx�n�d�z�F
�
x
L ;

xj
i�h=T

�
; L � min �L;Lj� : �59�

It is usually assumed that the system is infinite in space, so
that L should be replaced by the dephasing length Lj.

In the critical vicinity of the transition point, xj acquires a
maximum possible value of xj � i�h=T. Therefore, the second
argument of the function F�u1; u2� in relationship (59)
remains constant in the entire critical vicinity, u2 � 1, so
that F becomes a function of a single variable, namely, the
ratio between the lengths x and Lj:

fs � �dx�n�d�z�F
�

x
Lj

�
� �dx�n�d�z�F

�
dx

T 1=zn

�
; x < L : �60�

The quantity

u � dx
T 1=zn

�61�

is called the scaling variable. From the definition of the
critical region, it follows that the equation for its boundary
takes on the form x � Lj, or u � 1, or

T � �dx�zn : �62�

For certainty, we put the constant coefficient in expression
(62) equal to unity.

The arbitrary function of the scaling variable enters into
the expressions for any physical quantities in the critical
region. Subsequently, we shall be interested in the expression
for the conductivity, which in the critical region takes the
form [55]

s / �dx�n�dÿ2�Fs

�
dx

T 1=zn

�
� e 2

�h
x 2ÿdFs

�
dx

T 1=zn

�
: �63�

The last form of the representation of expression (63) explains
its physical meaning: the coefficient of the arbitrary function
has the dimensionality of conductivity.

In expression (63), it is assumed that the system is
sufficiently large:

L4Lj : �64�

Since as T! 0 the dephasing length Lj !1, at low
temperatures inequality (64) can be violated. Then, the
measurable quantity ceases to depend on temperature. For
example, the resistance, instead of tending to zero (super-
conductor) or infinity (insulator), comes to plateau with
lowering temperature. In the experiment, such a situation
happens fairly often. Suspicion in this case usually falls, first
of all, on the overheating of the electron system relative to the
temperature of the bath. However, the reason can also be the
violation of inequality (64) (see, e.g., Ref. [68] and also
Ref. [69] where the effect of finite dimensions was discussed
in detail using a concrete example). We shall run into the

saturation of resistance curves at low temperatures in the
experiments with Be (see Section 4.2) and then return to this
issue in Section 5.1 when examining the experiment that
concerned precisely the influence of the size of the system
(see Fig. 46 and the associated text).

In the review [7], which was cited at the beginning of this
section, it was assumed that the point of a quantum phase
transition is an isolated point on the abscissa axis of the phase
diagram �x;T �. This is precisely the case of the metal±
insulator transitions. In the case of the superconductor±
insulator transitions that are of interest for us here, the point
of a quantum phase transition is, on the contrary, an end
point of the Tc�x� curve of the thermodynamic superconduct-
ing transitions at finite temperatures. Let us first assume that
in the vicinity of the quantum point Tc�xc� � 0 the Tc�x�
curve finds its way inside the critical region (Fig. 14). Upon
intersection of the critical region along the line T � const, the
correlation length x becomes infinite twice, at points x � xc
and T � Tc. Therefore, the scaling function Fs�u� must
exhibit a singularity at a certain critical value uc correspond-
ing to the curve Tc�x�. Hence it follows that the critical
temperature at small dx changes in accordance with the
equation

Tc � uc�dx�zn ; �65�

which differs from equation (62) only in a numerical
coefficient.

The numerical coefficient in the equation of the bound-
aries of the critical region has no strict definition. Further-
more, in a sample with infinite dimensions the resistance to
the right of theTc�x� line is exactly equal to zero. Therefore, if
the curve Tc�x� of the thermodynamic superconducting
transitions finds its way inside the critical region, then it is
expedient to draw the boundary of the critical region precisely
along this curve, using Eqn (65) instead of Eqn (62).

Generally speaking, the Tc�x� curve can pass outside the
critical region; this variant is shown in Fig. 14 by a dotted
curve. Then, equation (65) is not applicable to this curve.

The application of the above-discussed scheme for
describing a critical region to a concrete experiment is given
in Section 4.4.

To conclude this section, let us consider the derivative
k � qr=qm which is frequently called compressibility. Since
r � ÿqf=qm, the singular part of the compressibility is defined

Critical region

T � const

Tc

Tc

T

xc x

Figure 14. Critical region in the vicinity of a quantum superconductor±

nonsuperconductor transition (the boundaries of the region described by

Eqn (62) are shown by dashed lines). The solid and dotted lines correspond

to two variants of the Tc�x� curve, of which one is described by Eqn (65).
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as

ks � ÿ q2fs
qm 2

: �66�

In the transitions corresponding to arrows 1 and 3 in Fig. 9, it
is the deviation of the chemical potential of the system from
the critical value, dx � dm, that can be chosen as the control
parameter. Then, using Eqns (58) and (66), we arrive at the
expression for the singular part of the compressibility:

ks / �dx�n�d�z�ÿ2 : �67�

For the insulator±superfluid state (and, correspondingly,
insulator±superconductor) transitions, we can go further [55]
using the condition

dm / �h
qj
qt

; �68�

which is equivalent to the well-known Josephson condition. It
relates a change in the phase j of the long-wave part of the
order parameter for the bosonic system to changes in the
chemical potential and suggests that the total compressibility
is given by

k � ÿ q2f
qm 2
/ ÿ q2f

qj 2
: �69�

Let us expand the free energy into a series in powers of the
order-parameter phase. The first term in the series will
contain the system density as the coefficient, and the second
term the total compressibility, as a result of relationship (69).
The third term of the expansion, which is determined by the
kinetic energy of the condensate, is proportional to the square
of the phase gradient and contains the density of the
superconducting component as a coefficient.

Now, let us change the boundary conditions of the system,
so that the phase in the space would change by p, and find the
difference between the energy densities of the system after and
prior to the change in the boundary conditions:

Df � fp ÿ f0 : �70�

The contribution from the first term of the expansion to Df is
equal to zero if the boundary conditions are antisymmetric.
As the size of the system increases, the third term of the
expansion approaches zeromore rapidly than the second one.
Consequently, one finds

Df / k
L2

: �71�

Comparing expressions (59) and (71), we arrive at the
following final expression for the total compressibility:

k / �dx�n�dÿz� : �72�

Changing the phase along the imaginary-time axis, we obtain,
using analogous reasoning, the expression for the singular
part of the density:

rs / �dx�n�d�zÿ2� : �73�

Since the majority of experimental results for super-
conductors have been obtained for two-dimensional or
quasitwo-dimensional systems, of special importance is the

phenomenological theory of superconductor±insulator tran-
sitions in two-dimensional superconductors, constructed on
the basis of the general theory in the work of Fisher et al. [70,
71]. Its basic ideas will be presented in Section 3.2.

3.2 Scaling for two-dimensional systems
and the role of a magnetic field
The superconductor±insulator transitions in two-dimen-
sional superconductors are closely related to the dynamics
of magnetic vortices and to the BKT transition. In
Section 1.5, we dealt with an ideal system in a zero magnetic
field. Now, we introduce disorder and a field, separately or
simultaneously. The variety of the variants obtained can be
conveniently described using a diagram similar to that given
by Fisher [71] (Fig. 15).

Let us first examine the plane B � 0. A comparatively
weak disorder pins (i.e., localizes) the system of vortices-
bosons but, according to the Anderson theorem [9], it does
not exert a strong influence on the system of 2e-bosons. The
fluctuations of the order-parameter phase are suppressed
through the pinning of vortices, so that a weak disorder
stimulates the establishment of a superconducting state. The
temperature Tc0 is not affected by weak disorder, and the
temperature Tc can only grow. A strong disorder suppresses
the temperature Tc0 (see Section 2.1). Consequently, Tc,
which is less than or equal to Tc0, is also suppressed. At a
certain critical disorder, Tc becomes zero, and the thermo-
dynamic phase transition in the zero magnetic field goes over
to a quantum transition.

Let us now return to the region of a weak disorder and
switch on a perpendicular magnetic field (plane x � 0). In a
weak field B 6� 0, the equilibrium in the vortex±antivortex
system is shifted in such a way that the concentration of
vortices with the sign corresponding to the direction of the
external field prevails:

N� ÿNÿ � B

F0
:

At a certain strength of the magnetic field, the antivortex
concentration Nÿ becomes zero, and the vortices N� align
into a lattice with a period ~b � �B=F0�ÿ1=2 [72]. In weak fields

Bc2�T �

Bc

xc

x

xc�B�
B

T
Tc0

Tc

0

Tc�x�

Bm�T �

Figure 15. Region of superconducting states in the �x;B;T � space for a

two-dimensional superconductor (the boundaries of the region are shown

by solid curves). In an ideal systemwithout amagnetic field �x � B � 0�, a
superconducting transition into a resistive state occurs at a temperature

Tc0; at the temperature Tc, a BKT transition occurs.
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at a weak disorder, the vortex lattice is pinned as a whole by
pinning centers spaced at a distance a, which is much greater
than the vortex lattice period [72]:

a4 ~b : �74�
With an increase in the field strength or disorder, the relative
number of pinning centers grows and inequality (74) becomes
weaker or is even violated. The disorder `breaks' the vortex
lattice, converting it into a vortex glass, and then causes its
melting. The melting of the vortex lattice means that the
discrete vortices obtain the possibility of moving freely, which
leads to dissipation. Thus, the strong magnetic field and
strong disorder act on the various types of bosons differ-
ently: they suppress the coherent superfluid motion of 2e-
bosons, but at the same time delocalize vortices.

Thus, the region of the superconducting states in the
diagram shown in Fig. 15 adjoins the origin and is bounded
by the surface `stretched' onto the curves Tc�x�, xc�B�, and
Bm�T �. Quantum phase transitions occur along the xc�B�
curve, and thermodynamic superconductor±nonsupercon-
ductor transitions occur on the remaining part of the sur-
face. As can be seen from the curves shown by dashed lines in
Fig. 15, a region of resistive states resides above the layer-
shape region of the superconducting states. In accordance with
the BCS theory, 2e-bosons and vortices-bosons coexist in this
layer.

The above qualitative picture helps in understanding the
origin and meaning of the theoretical model describing the
superconductor±insulator transition in two-dimensional
superconductors in terms of vortices±2e-bosons duality. The
model assumes that the system of 2e-bosons to one side of the
phase transition is in the superconductive state, and the
vortices are localized, while to the other side it is the electron
pairs that are localized and the system of vortices is superfluid
[71, 73]. Those who remain unconvinced by the above
considerations in favor of duality can find additional
arguments in Section 5.1 devoted to Josephson junction
arrays (see Fig. 44 and related comments). An additional
argument is also the symmetry of the current±voltage
characteristics of some systems (connected with supercon-
ductor±insulator transitions) relative to the interchange of the
current J and voltageV axes. This symmetry is not reduced to
the fact that in the superconductor we have V � 0, and in the
insulator J � 0, but is based on more intricate analogies (see
Fig. 41 in Section 4.5, and Figs 46b and 46c in Section 5.1).

Let us now turn to a theoretical substantiation of this
model. The two-dimensional system under consideration can
be described in two alternative languages: the language of
charged bosons, and the language of formal quasiparticles
(also of the boson type) which carry separate vortices. The
Hamiltonian for charged bosons has already been written out
above twice, namely, for a regular system of granules
[formula (19)] and for bosons at sites of a lattice with a
randomly changing binding energy at the sites [formula (36)].
Let us now represent this Hamiltonian in a form close to
formula (19):

Ĥ � Ĥ0 � Ĥ1 ;

Ĥ0 �
X
i j

1

2
Vi j�n̂i ÿ n0��n̂j ÿ n0� �

X
i

Uin̂i ; �75�

Ĥ1 � ÿJ
X
i j

cos �ji ÿ jj � Aext
i j � :

Here, the quantityAext
i j describes the external magnetic field; it

is determined by the difference of the vector potentials of the
field at the appropriate sites. This is an additional term with
respect to Hamiltonian (19) in which the magnetic field was
ignored. The operators n̂i of the number of bosons are
conjugate to the phase operator: �ji n̂j� � idi j; Vi j corre-
sponds to the Coulomb repulsion of bosons at different
sites, and Ui corresponds to the random potential changing
from site to site, with a zero average value (Hamiltonian (19)
contained no corresponding term, since the disorder in that
case revealed itself in the spread of the coefficients Ji j). The
average number of bosons is equal to n0 and is assumed to be
small in comparison with unity. The arrangement of the
vortices enters into Hamiltonian (75) through the phase
difference ji ÿ jj in Ĥ1.

According to Refs [71, 73], this system can also be
described with the aid of a Hamiltonian for an alternative
system of quasiparticles:

Ĥ 0 � Ĥ 00 � Ĥ 01 ;

Ĥ 00 �
X
i j

1

2
Gi j�N̂i ÿ B��N̂j ÿ B� � Ĥ0�H�a� �

X
i

} 2
i ; �76�

Ĥ 01 � ÿJ 0
X
i j

cos �#i ÿ #j � ai j� :

Here, N̂i is the operator of the number of vortices that is
conjugate to the operator of their phase #i; Gi j describes the
interaction of vortices, and the magnetic field B assigns their
average number. The last two terms in the expression for Ĥ 00
contain information on the field a created for the alternative
quasiparticles by the bare 2e-bosons randomly located at the
sites. The first term represents an expression for Ĥ0 entering
into Eqn (75), in which an operator H� a is used instead of
the operator n̂i, and the `momentum' operators }i are
conjugate to the field values ai at the sites.

Certainly, the identity of Hamiltonians (75) and (76) is
very conditional. First, the interaction Vi j between the
2e-bosons occurs according to the Coulomb law, while the
interaction between the vortices is logarithmic: Gi j / ln ri j.
However, this difference can be levelled off by the assumption
that the two-dimensional layer possesses a large dielectric
constant, so that the electric field of charges is mainly
concentrated in this layer. A more essential fact is that the
Hamiltonians (75) and (76) do not take into account normal
electrons which assist near the vortex axes. These electrons
make the motion of vortices in the presence of an external
electric field dissipative, which for sure disrupts the possible
duality. We shall not discuss under what conditions the
difference between the properties of the gas of 2e-bosons
and the gas of vortices can be considered unessential, but we
shall examine what follows from the application of the
theoretical scheme (52)±(63) to the superconductor±insula-
tor transition andwhat is subject to experimental verification.

Formula (63) for the conductivity in the two-dimensional
case takes on the form

s � e 2

�h
Fs

�
dx

T 1=zn

�
: �77�

This means that the separatrix separating the s�T � curves in
the regions of the superconductor and insulator is horizontal:

sc � s�T; x � xc� � e 2

�h
Fs�0� � const : �78�
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This assertion is independent of whether the 2e-bosons±
vortices duality is realized or not, being a strict consequence
of the one-parametric scaling.

Formula (78) looks very simple; nevertheless, a very
strong and nontrivial assertion follows from it. The constant
sc can be neither zero nor infinity: since the separatrix
s�T � � sc separates two families of curves in the upper half-
plane s > 0, it must be finite. This assertion is nontrivial for
two reasons.

First, the finiteness of sc indicates the presence of a
metallic state at the boundary between the superconducting
and insulating states. This contradicts the conclusions of the
well-known work by Abrahams et al. [74], according to which
the system of two-dimensional noninteracting electrons
becomes localized at even an arbitrarily low disorder, so
that no two-dimensional metal can exist. The problem lies
possibly in the fact that the results of Ref. [74] relate to
fermionic systems: it is precisely for these systems that the
lowest critical dimensionality, at which the logarithmic
corrections lead to localization, is dc � 2. For bosonic
systems, one has dc � 1.

Second, assertion (78) and the related conclusions do not
agree with the results of the calculations of superconducting
fluctuations for a two-dimensional superconductor in the
dirty limit for T5Tc and B0Bc2 [59]. The absolute value of
the separatrix (50) of the set of sB�T � curves that is obtained
according to the perturbation theory grows with decreasing
temperature (see Fig. 10). The calculations are valid only for
ds5s but, in terms of sense, it is precisely the resistance
1=sBc2

that must become zero exactly at T � 0.
The presence of an intermediate metallic state can also be

established proceeding from the duality [71]. Let us consider a
narrow neighborhood lying to both sides of the transition. In
this region, the possibility must exist to write out expressions
for the physical quantities in question, relying on any of the
two representations. Assuming that both the vortices and the
2e-bosons move in this neighborhood via a diffusive mechan-
ism, we shall use two methods to express the energy that is
absorbed by the system of moving 2e-bosons or by the system
of moving vortices. The energy e absorbed by an individual
boson is proportional to the electric field strength E and
distance x over which the boson preserves the coherence
�e / Ex�. Analogously, the expression for the absorbed
energy in the case of the vortices contains the product of the
current density j determining the Magnus force and the
characteristic distance x travelled by the vortex in the time
of free motion. Let e be some function U of this product:
e � U� jx�. Then, it follows from the identity of the two
representations that

Ex / U� jx� : �79�

When approaching the transition point, where x!1, it
follows from the condition of preserving the identity that
U�1� ! jx and

E / j : �80�

Although both the superconductor and insulator atT � 0 are
nonlinear media exhibiting no linear response, in the
boundary state a linear response (80) exists, i.e., the
boundary state is metallic.

An even stronger assertion follows from the duality: the
conductivity of the boundary state is a universal constant [70,

71, 73] independent of the microscopic structure of the
system. Following Ref. [70], let us write out the dc con-
ductivity in the form of a limiting expression for the
frequency-dependent conductivity s�o�:

s � lim
o! 0

s�o� � �2e�2 lim
o! 0

rs�ÿio�
ÿimo

: �81�

This is a standard trick, which is used, for example, in deriving
the Kubo±Greenwood formula. Expression (81) contains
only the density of the superconductive (nonlocalized) part
of the bosons. The dependence of its limiting value for o! 0
on the changes in the control parameter dx is determined by
expression (73). Therefore, let us isolate from the density
rs�o� the analogous dependence on x explicitly, representing
rs�o� in the form of the product of x 2ÿdÿz and a certain new
functionR of a dimensionless argument:

rs�o� � x 2ÿdÿzRÿojxjj� : �82�

Recall that jxjjÿ1 is the characteristic frequency of quantum
fluctuations. Relationship (82) for the function rs�o� indeed
goes over into Eqn (73) as o! 0 and at jxjjÿ1 � const if
R�ojxjj� tends to a constant.

Let us now examine the behavior of the functionR�ojxjj�
in the vicinity of the transition point, where x!1 and
xj !1, while o remains constant. Since the density rs�o�
must also remain finite under these conditions, it follows from
relationship (82) that in this limit we have

Rÿojxjj� � cd
ÿ
ojxjj

��d�zÿ2�=z
; �83�

where cd is a universal constant depending only on the
dimensionality of the system. Substituting (83) into expres-
sion (82) and then into the expression for the conductivity, we
obtain the desired formula for the dimensionality d � 2:

s � c2
e 2

�h
: �84�

Let us also consider the qualitative model reasoning from
Ref. [73]. To this end, we represent a small film with two
electrodes in the state close to the superconductor±insulator
state as a Josephson element in which phase slips are possible.
If the phase at one electrode is assumed to be zero and that at
the other electrode is designated as j�t�, then, according to
the Josephson relation, the potential drop across the elec-
trodes is given by

V � �h

2e
_j � �h

2e
_nv ; �85�

where a representation was used, according to which the
phase slip is the result of the flow of vortices _nv across the
electrode line, such that each vortex passed shifts the phase by
2p. Correspondingly, the current j through a film is
determined by the flux _nc of Cooper pairs from one electrode
to another: j � 2e _nc. As a result, the film resistance is defined
as

R � V

j
� 2p�h

�2e�2
�

_nv
_nc

�
: �86�

Since all the vortices in the superconducting state are pinned
and _nv � 0, while in the insulator _nc � 0, formula (86) relates
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only to the boundary state. It remains only to assume that, as
a result of the symmetry specified by the duality, in the
boundary state the diffusion of each Cooper pair through
the system is accompanied by the diffusion of exactly one
vortex across the current. Then, the universal resistance of the
boundary state is equal to a quantum of the resistance RQ:

RQ � 2p�h

�2e�2 � 6:45 kO=& ; i:e:; c2 � 2

p
: �87�

As has already been stated, the duality is at best fulfilled
only approximately. Therefore, Eqn (87) should be replaced
by the relationship Run � cuRQ, where cu is a constant
coefficient equal, to an order of magnitude, to unity. This
coefficient has repeatedly been calculated. The results
obtained depended on the assumptions employed; in parti-
cular, cu � 8=p according to Ref. [70], 3.51 according to
Ref. [73], 7.1 for short-range repulsive interaction between
the bosons, and 1.8 for the Coulomb interaction [75].

The last result, according to which the coefficient cu
depends on the nature of interaction, means that cu can
depend on the external or internal parameters of an electron
system. This means that the magnitude of the resistanceRun is
not universal, although its value always approximates
10 kO=&.

In conclusion of this section, let us formulate some
questions that the scaling theory of superconductor±insula-
tor transitions in two-dimensional electron systems put to
experiment. These questions concern the evolution of the
temperature dependences of the dc resistance of thin or
ultrathin films with changes in the control parameter x.
Each subsequent question makes sense only if a positive
answer to the preceding one was obtained.

(1) Does there exist for a family of Rx�T � curves a

separatrix Rxc�T � that separates the curves for which

Rx�T � ÿ!T! 0
0 (superconductor) andRx�T � ÿ!T! 01 (insulator)?

(2) Does the separatrix Rxc�T � have a finite limiting value
Run as T! 0 on the assumption that Run 6� 0 and that
Run 6� 1?

(3) Does the derivative of the separatrix qRxc=qT tend to
zero as T! 0?

(4) What is the magnitude of the coefficient cu and is it
stable against changes in the entire family of Rx curves under
the effect of some independent parameter X?

With the positive answers to questions 1±3, scaling curves
(77) can be constructed and the product zn of the critical
exponents can be determined.

We shall reproduce this procedure using a concrete
example in Section 4.1.

3.3 Two-parametric scaling
Everything that was said in Sections 3.1 and 3.2 is directly
applicable only to systems with a nonrenormalizable interac-
tion. The meaning of this assertion can be explained for the
example of a system of charged particles with a screened
Coulomb interaction. If the interaction is independent of the
system size L (and, at a finite temperature T, of the dephasing
length Lj), then the system near the transition point follows
the laws of one-parametric scaling, i.e., the position of the
system in the vicinity of the transition point depends only on
one control parameter x, so that dx in formulas (58)±(60) or
(63) depends on neitherL norT. In consequence, a separation
of the influence of the variables occurs: the correlation length

x depends only on x, and the dephasing length Lj, only on T.
If, on the contrary, it is necessary to take into account the
dependence of the interaction on the characteristic dimension
of the system, then the scaling becomes two-parametric.

In fact, the Hamiltonians (19), (36), (75), and (76) are
constructed in such a way that the renormalizable interaction
is neglected in them. Therefore, in all scaling schemes
describing superconductor±insulator transitions the formu-
las of one-parametric scaling are used. The question arises:
what will change in the predictions of the scaling theory if we
use the scheme of two-parametric scaling?

The difference between one-parametric and two-para-
metric scaling can be most simply explained with the aid of
flow diagrams illustrating the solutions of equations of the
renormalization-group theory [76] (see also Refs [77, 78]
for two-parametric scaling). We do this using the example
of a metal±insulator transition in two-dimensional systems.
The state of the electron system will be characterized by its
conductance y, considering it to be the only parameter that
determines the state of the system in the scheme of one-
parametric scaling. For noninteracting electrons, the
evolution of the system at a temperature T � 0 occurs
with a change in its size L in accordance with the equation
[61, 74]

d ln y

d lnL
� b�ln y� : �88�

If the system originally has a size L � 1 but is kept at a finite
temperature, then the variable L in equation (88) is replaced
by the dephasing length Lj.

The function b depends on the dimensionality of the
system d. The fact that at d � 2 it lies completely in the
lower half-plane in Fig. 16a and does not intersect the abscissa
axis means that any infinite �L � 1� two-dimensional system
of noninteracting electrons at T � 0 becomes localized.
Therefore, no metal±insulator transition exists at all in such
a system. For the transition to exist, it would be necessary for
the b�y� curve to intersect the abscissa axis b � 0 (the
interpretation of flow diagrams is considered in more detail
in Ref. [7]).

The possibility of a phase transition appears upon the
inclusion of an interelectron interactionY, which changes by

QCP

A

Y bB

0 yyc

y1

y2

b a

0

ln y

d
�
2

Figure 16. (a) Flow diagram of a two-dimensional system of noninteract-

ing electrons described by a single parameterÐconductance y [74].

(b) Part of a flow diagram for a two-dimensional electron gas with

interaction constructed in Ref. [79]; there are two independent para-

meters: conductance y, and interaction Y; QCP is the quantum critical

point (the quantitative relationships calculated in Ref. [79] have not been

retained). The diagram also conditionally shows the new axes A and B

directed along the separatrices.
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varying L or T. Now, the initial state of the system is
determined by two parameters, y and Y, and two equations
appear instead of one equation (88):

d ln y

d lnL
� by�ln y; lnY� ; �89�

d lnY
d lnL

� bY�ln y; lnY� :

The solution to equations (89) is sought in the form of
some function L� y;Y�, whose equipotentials
L�y;Y� � const determine the evolution of the system,
namely, the changes in the parameters y and Y as
L;Lj !1; therefore, these equipotentials are called flow
lines. It is usually assumed that the motion of the representa-
tive point along the flow line begins from the point at which
L � l (l is the elastic mean free path). The quantum phase
transition is associated with the saddle point of the function
L, since the flow lines diverge just near the saddle point. This
is clearly seen from the flow diagram shown in Fig. 16b, which
was constructed on the basis of the calculated results (see
Ref. [79]) for the model of a two-dimensional system with a
multivalley electron spectrum. The abscissa axis in this
diagram corresponds to the conductance y of the two-
dimensional system of normal electrons; the quantity Y
plotted along the ordinate axis reflects the effective interac-
tion. The saddle point QCP is the quantum critical point at
which the metal±insulator transition occurs. If, initially, the
representative point lies in the flow line to the left of the
separatrix (point y1), with increasing L or Lj it will approach
the line y � 0, i.e., the system becomes insulating. In the flow
lines that lie to the right of the separatrix (for example,
beginning from the point y2), the representative point, on
the contrary, will move toward larger y.

The passage from one flow trajectory to another can be
implemented by varying the control parameter. In so doing,
the representative point can be placed, in particular, onto the
separatrix and then drawn nearer to the QCP by increasing L
orLj. As can be seen from the diagram, this motion along the
separatrix will change the conductance y of the system: in the
case of two-parametric scaling, the finite slope of the
separatrix in the set of temperature dependences of s or R of
the system of two-dimensional electrons is determined by the
angle at which the separatrix in the flow diagram approaches
the quantum critical point. This constitutes an essential
difference from the case of one-parametric scaling predicting
a horizontal separatrix of the temperature dependences of
conductivity for quantum transitions in any two-dimensional
system, according to relationships (77) and (78).

The occurrence of a metal±insulator transition in the two-
dimensional system of normal electrons and the presence of
the related inclined separatrix in the set of the temperature
dependences of resistance were confirmed in Ref. [80]. As we
shall see in Section 4, the inclined separatrices are also
encountered fairly often in the case of superconductor±
insulator transitions.

The presence of two independent parameters determin-
ing the state of the system changes the entire `system of
values' in the vicinity of the transition point. We shall here
restrict ourselves to the problem of correlation lengths. By
linearizing the set of equations in the vicinity of the saddle
point, we can, by replacing the variables �y;Y! A;B�,
which involves the rotation and extension of the axes, attain
the separation of variables and reduce the set of equations

(89) to the form

d lnA

d lnL
� sA ln

A

Ac
;

�90�
d lnB

d lnL
� ÿsB ln B

Bc
;

where sA and sB are the positive numbers.
In the new coordinate system, the motion along the

A-axis, i.e., along the separatrix B � Bc, starts from the
saddle point �Ac;Bc�; it is described by the same equation as
for the case of noninteracting electrons in a 3D space [74]. The
general solution for the first of equations (90) takes the form���� ln A

Ac

���� � �L

xA

�sA

; �91�

where the correlation length xA depends on the starting point
A0 from which the motion along the separatrix toward
infinity begins. The nearer A0 is to Ac, the greater the
magnitude of xA:

xA !1 for jdAj � jA0 ÿ Acj ! 0 : �92�

With the motion along the second separatrix �A � Ac� from
the starting point B0 toward the quantum transition point
QCP, we have respectively���� ln B

Bc

���� � �L

xB

�ÿsB
and xB ! 0 for jdBj � jB0 ÿ Bcj ! 0 :

�93�
Thus, since there are two equations in system (90), we had to
introduce two correlation lengths. The correlation length xA,
which corresponds to the effective size of fluctuations,
diverges at the transition point, while the corresponding
length xB, which is connected with interaction, becomes zero:

xA / jdAjÿnA ;
xB / jdBjnB ;

nA; nB > 0 : �94�

At an arbitrary point in the vicinity of the point QCP, the
physical properties of the system are determined by two
correlation lengths, and the function F, which was intro-
duced in formula (59), is now a function of four variables, so
that the general expression for the conductivity at a zero
temperature T � 0 takes on the form

s � e 2

�h
Fs

�
xA
L ;

xA
j

i�h=T
;
xB
L ;

xB
j

i�h=T

�
; L � min �L;Lj� :

�95�

Here, two additional correlation lengths along the imaginary-
time axis appeared:

xA
j / �xA�zA ; xB

j / �xB�zB ; �96�

and by the quantity L, as in Eqn (59), we imply the size L of
the sample at a zero temperature or the temperature-
dependent dephasing length Lj for a large-sized system. It is
remarkable that the length Lj plays the role of scale with
respect to both correlation lengths: xA, and xB.

When approaching the saddle point �Ac;Bc� along the
A-axis, the length xA !1, and xA

j reaches the maximum
value �h=T. Upon approaching the saddle point along the
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B-axis, the length xB, which must have been approaching
zero, is bounded from below by a certain minimum value, in
the simplest case, by the mean free path, xB 0 l; simulta-
neously, xB

j also appears to be bounded from below
�xB

j 0 l zB�. Thus, the last three of the four correlation
lengths, i.e., xA, x

A
j , xB, and xB

j , have constant values in the
critical region depicted in Fig. 17, and expression (95) reduces
to

s � e 2

�h
Fs

�
xA
L ; T

�
: �97�

In themost interesting case of an infinite system �L � Lj�, we
obtain

s � e 2

�h
Fs

�
dA
T 1=zn

; T

�
�98�

instead of formula (77).
It is precisely in this form that the scaling relation (97) was

used for an analysis of experimental data [78].
Owing to the second argument of the function Fs, the

behavior of the family of s�T � curves near the quantum phase
transition changes. Let us fix the magnitude of the control
parameter A in such a manner as to fulfill the condition
dA � 0. This means that from the entire set of s�T � curves we
chose a separatrix corresponding to the temperature depen-
dence of the conductivity of the boundary state. As is seen
from relationship (98), the conductivity remains temperature-
dependent, although the first argument of the function Fs

remains unaltered, being identically equal to zero. We have
already noted this temperature dependence in the analysis of
the two-parametric flow diagram in Fig. 16. Given the
mechanism of the formation of the dephasing length, the
temperature dependence of the separatrix can be calculated
analytically [78].

Thus, the existence of a sloped separatrix is a signature of
two-parametric scaling.

4. Experimental

For the sake of convenience, we shall divide the variety of
experiments performed into three groups based on the type
and specific features of the material and control parameter.
Let these be ultrathin films with a thickness b serving as a
control parameter; materials of a variable composition

which can be varied in this way or that, and high-
temperature superconductors. Such groups will be
described in Sections 4.1±4.3. Section 4.4 is devoted to
experiments in which the breakdown of superconductivity
leads to the formation of a `bad' metal with a negative
derivative qR=qT of the resistance R at low temperatures.
Finally, in Section 4.5 we shall consider data on the current±
voltage characteristics and nonlinear phenomena in the
vicinity of a superconductor±insulator transition.

4.1 Ultrathin films on cold substrates
The general scheme of experiments on ultrathin films
deposited on cold substrates is as follows. A substrate with
preliminarily applied contacts is placed into the measuring
cell of a cryostat; the film is deposited in several small steps,
and after each new deposition, the temperature dependence of
the resistance is measured. Thus, a whole series of films is
obtained and measured in a single experiment without
warming the cell to temperatures substantially exceeding
liquid-helium temperature. In particular, it is precisely such
a procedure that was used in experiments whose results are
given in Fig. 3.

Since the interval of effective thicknesses, in which such
experiments are performed, varies from 4±5 A

�
to several

dozen angstroÈ ms, we can be sure that the study concerns just
a two-dimensional object: d � 2. A second advantage of this
arrangement of the experiment lies in the fact that we can
reach a constancy of all random factors affecting the
resistance and clarify the effect of precisely the film thickness
on the temperature dependence of its resistance. However, in
such an experiment we should avoid the coalescence of atoms
into droplets during film deposition, i.e., we should avoid the
formation of a granular film. To this end, the cold substrate is
most frequently precoated with a layer of amorphousGe with
a thickness b0 � 5 A

�
, which wets the substrate, remaining by

itself amorphous at low temperatures, i.e., it does not impose
its lattice period to the overlying film [81].

The important role played by the layer of amorphous Ge
is beyond all doubt; it is illustrated, for instance, in Fig. 3. At
the same time, the processes that are responsible for the
transport properties of ultrathin films and the mechanisms
of the influence of the film thickness b are not yet completely
clear. Usually, it is assumed that the film thickness b
determines the effective mean free path of electrons owing to
the diffuse scattering of electrons by the film surface, whereas
the Ge layer does not exert a direct effect on the film
conductivity. It is, however, possible that, since the thick-
nesses b0 and b are comparable, the Ge layer affects the
electronic spectrum or the effective concentration of electrons
in the film under study. There also exist other possible
variants of the influence of the Ge layer on electron transport
in the main film [82]. At the same time, this is of no
consequence, in a sense, since the very fact of the effect of
the thickness b is beyond any doubt and quantitatively this
effect can be characterized by the resistance of the film rather
than by the film thickness. This quantitative characteristicÐ
resistance per squareÐallows comparing films of different
materials.

Ultrathin bismuth films. These films appear to have been
studied most thoroughly. The phase transition obtained on
these films is illustrated in Fig. 18a. The thinnest films behave
as insulators; their resistance increases exponentially with
decreasing temperature. In the thickest films, a superconduct-
ing transition occurs, and its temperature Tc lowers with

B

T

xB � l

xAf � �h
T

�Ac;Bc�

A

Figure 17. Critical vicinity of a saddle point in a flow diagram for two-

parametric scaling.
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decreasing thickness of the film. The film thicknesses
indicated alongside the curves are the average values
calculated from the amount of the deposited material and
known density of the metal.

The direct vicinity of the phase transition can be
examined in some more detail using Fig. 18b, which
displays R�T � curves for a dense series of weakly differing
states. Generally speaking, some additional information is
required to assume that the resistance of the states lying
inside the interval marked by arrows on the right-hand side
of Fig. 18b tends to infinity as T! 0, i.e., that these states
can be considered to be insulating and the insulator±
superconductor transition to be unsplit (cf. the experimen-
tal data for the three-dimensional NbÿSi system shown in
Fig. 1). To investigate this question, the temperature
dependences of the conductance of those states that
exhibited no superconducting transition were studied. It
turned out [85, 86] that the conductance y for the thinnest
films changes according to the Arrhenius law:

y � y0 exp

�
ÿT I

0

T

�
; �99�

and that with increasing film thickness b this dependence is
replaced first by the Shklovsky±Efros law:

y � y0 exp

�
ÿT I

0

T

�1=2

; �100�

and then by a logarithmic dependence:

y � y0 ÿ ln
T

T I
0

: �101�

All three formulas (99)±(101) contain a parameterT I
0 with

the dimensionality of temperature (superscript I indicates
that here we are dealing with the dependences on the insulator
side). This makes it possible to bring all experimental points
together to a single y�T=T I

0� curve with the aid of a simple
procedure. For the y�T=T I

0� curve represented in the �lnT; g�-
axes, the change in T I

0 is reduced to a shift of the curve along
the abscissa axis. Therefore, starting from the y�T=T I

0� curve
for the thinnest film and merging each following curve with
the preceding one by means of a parallel translation, we can,
by gradually enlarging the range of variability of the
argument T=T I

0 , construct a curve of the universal function
y�x�, in which all experimental points lie and which is
described to a good accuracy in the different segments by
formulas (99)±(101).

The parameter T I
0 proves to be a monotonic function of

the film thickness b or the film resistance R � measured at a
certain fixed temperature T � that exceeds the superconduct-
ing transition temperature. In an analogous way we can also
proceed on the superconductor's side of the transition,
selecting there the parameter TS

0 in such a way that all
experimental yb�T � curves become merged into a single
curve y�T=T S

0 �. By building up both functions, T I
0�R �� and

T S
0 �R ��, we shall see that they have a singularity at one and

the same value R � � R �c corresponding to the resistance of
the separatrix at a temperature T � (Fig. 18c). This means that
we approach one and the same value of the critical thickness
bc from both sides, i.e., the phase transition is unsplit.

The above-described empirical procedure for determining
T I
0�R �� is valid for the entire insulator's domain rather than

for the critical vicinity of the quantum transition. In the
critical vicinity, the theory poses limitations both on the form
of the y�T � functions and on the scaling variable. According
to the theory [70, 71] constructed on the basis of the general
theory of quantum transitions and the model of dirty bosons,
the separatrix that separates the R�T � curves with a super-
conducting transition (Fig. 18a, b) from the curves in which
there is no transition, should pass horizontally in two-
dimensional systems, and on both sides of the separatrix the
sign of the derivative along the curves should remain
constant, although different in the regions of the super-
conductor and insulator (see the end part of Section 3.2). In
essence, it is precisely the fulfilment of these two conditions
that symbolizes the first level of agreement with the theory
and makes it possible to carry out the scaling procedure and
to determine critical exponents in accordance with formula
(77). In connection with the experiments discussed, it is
expedient to write out the latter formula as

R�dx;T � � RcF

�
dx

T 1=nz

�
; dx � jbÿ bcj : �102�

As follows from Fig. 18a, b, the results of experiments
performed on Bi films seem ideal from the viewpoint of
these conditions. The separatrix Rbc�T � � R�T; b � bc� is
indeed horizontal, as is predicted by the theory [70, 71]. The
processing of the results using formula (102) indeed makes it
possible to bring together all the experimental points from the
curves given in Fig. 18b to two branches of a single scaling
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with film thickness b increasing from above downward [83]. (b) Central
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;
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parameters T I
0 and T S

0 on each side of the quantum phase transition; the

quantity d plotted on the abscissa represents normalized difference

between the film resistance R � and the critical value R �c at T � � 14 K:

d � �R � ÿ R �c �=R �c [85].
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curve (Fig. 19a) and to determine the product nz of the critical
exponents.

The representation of the temperature dependence of
resistance R�T � near the transition point on an extended
scale (Fig. 19b) shows that even in bismuth the separatrix is
only approximately horizontal, and in other materials the
situation is even worse. In Al and Pb films, the transition
manifests itself but the separatrix is sloped. For example, in
Al films the resistance along the separatrix changes by a factor
of at least 1.5, from 20 to 30 kO, as the temperature decreases
from 15 to 1 K. This diminishes the accuracy of the scaling
procedure.

However, the agreement is worse even for Bi films at the
following level of comparison with the results of the theory.
According to the scaling theory of `dirty bosons', the metallic
state corresponding to the separatrix must possess a universal
value of the resistance, Run, which is on the order of the
resistance RQ given by formula (87). The resistance Run must
be insensitive to the microscopic features of a concrete system
and must depend only on the universality class of the
transition. The universality of Run allows, in principle,
calculating the proportionality factor cu � Run=RQ by tak-
ing advantage of some comparatively simple model. Some
different numerical values of cu were given in Section 3.2 after
formula (87). Whatever the true value of Run, it must be
reproduced in different experiments. However, the values of
Run obtained in various laboratories using different materials
and distinct intermediate underlayers (e.g., amorphous Si or
Sb instead ofGe) had approximately a twofold spread, from 6
to 12 kO. The universality of the critical resistance Run is
confirmed only to an order of magnitude.

As has already been noted, the bosonic scenario for the
quantum phase transition assumes the existence of electron
pairs on both sides of the superconductor±insulator transi-
tion. This means that themodulusD of the order parameter at
the transition, i.e., the energy of pairing or the width of the
superconducting gap, must not become zero; the super-
conductivity must be destroyed as a result of strengthening
fluctuations of the order-parameter phase. This was checked
on films of several metals (Pb and Sn in Ref. [87], Bi in
Refs [88, 89]) using tunnel experiments whichmake it possible
to measure the density of states as a function of energy near
the Fermi level. The first example of such measurements is
given in Fig. 20. From the value of the tunneling voltageV0, at

which the normalized tunneling conductivity GN is equal to
unity, it is possible to estimate the superconducting gap:
D � eV0. When approaching the transition, i.e., as the film
thickness b approaches a critical value bc, the superconduct-
ing gap D behaves as usual: it tends to zero, remaining
proportional to the transition temperature, D / Tc.

At the same time, according to Fig. 20, a certain
uncommonness in the behavior of the system is nevertheless
observed: the density of states, which is proportional to GN,
does not vanish inside the gap. This is apparently due to the
fact that the method of measuring density of states with the
aid of a tunneling junction is integral, and over the area of the
contact there are a large number of vortices of both signs,
inside which the superconductivity is destroyed and the
electrons are normal [90]. As can be seen from Fig. 20, the
averaged density of states at the Fermi level (in the middle of
the gap) becomes greater as the state of the system gets nearer
to the transition point.
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Since the moving vortices cause fluctuations of the order-
parameter phase, it is clear that as the transition is
approached the amplitude of these fluctuations grows
rapidly, simultaneously with a decrease in the gap width.
However, it is difficult to say what occurs earlier, i.e., whether
this is the growth of the fluctuations in the phase or the
decrease in the gap width. In any case, no signs of the
retention of the gap (modulus of the order parameter) has
been found in this experiment at the transition in the absence
of a magnetic field.

An increase in the number of vortices indicates an increase
in the number of normal electrons near the vortex axes (in
their cores). Until we deal with ultrathin films, it makes no
sense to discuss whether the electrons in the vortex core are
localized or quasifree relative to the motion along the vortex
axis, whereas in the case of thicker films and three-dimen-
sional systems such a question appears to be appropriate.

Let us now go over to the description of experiments with
another control parameterÐa magnetic field.

The superconducting transition in a film with a thickness
b > bc can be destroyed by a magnetic field. In this case, we
obtain a superconductor±insulator transition with amagnetic
field as the control parameter. The thicker the film, the less its
normal resistance and the stronger the critical field. The
application of a magnetic field gives the possibility of
conducting several fundamentally new experiments on ultra-
thin Bi films and, in particular, to compare the different ways
of approaching a superconductor±insulator transition.

Figure 21, which was taken from Ref. [89], demonstrates
the magnetic-field-induced behavior of an ultrathin Bi film
with a thickness b > bc, which, without a field, appears to be
superconducting with a transition temperature of 1.64 K. All
RB�T � curves can bemore or less unambiguously divided into
two groups: those that demonstrate a tendency toward the
establishment of a superconducting state with decreasing
temperature (R! 0 as T! 0), and those for which it is
possible to assume thatR!1 as T! 0. The strength of the
field Bc in which a separatrix is obtained that separates these
two groups of curves with different asymptotic behaviors is
considered as critical. In Fig. 21a, according to this definition,
one has Bc � 2:5 T.

Let us compare the RB�T � resistance curves given in
Fig. 21a with analogous Rb�T � curves plotted in Fig. 18a, b.
In the last figure, the superconducting transition temperature
decreases as the critical thickness bc is approached, whereas in
the case of similar RB�T � curves shown in Fig. 21a with the
magnetic field in the role of the control parameter no visible
shift in the temperature of the superconducting transition onset
is observed, but at temperatures less than that of the transition
onset, an increase in dissipation is observed with increasing
the magnetic field strength.

The comparison of the behavior of resistance curves can
be supplemented by the comparison of tunnel characteristics
(cf. Figs 20 and 21b). It is seen from Fig. 21b that an increase
in the field strength leads to an increase in the density of states
in the center of the gap. This, in general, is natural: the
strengthening of a field should lead to an increase in the
density of vortices. According to the theoretical calculation of
the density of states averaged over a cell of the vortex lattice
for the `conventional' (far from the superconductor±insulator
transition) type-II superconductor [90, 91], in the middle of
the gap we have GN � B=Bc2. Near the transition, however,
there is a finite density of states in the zero field; in Fig. 21b, it
amounts to approximately 0.2, just as in Fig. 20 for the same

film. At the same time, the density of states is GN � 0:9 in a
field Bc � 2:5 T, when the superconductivity should see-
mingly be destroyed; it becomes close to unity in a field of
approximately 4 T, at which the resistance curve R4T�T �
demonstrates a clear tendency toward growth with decreasing
temperature (Fig. 21a).

One more specific feature of tunnel characteristics seen in
Fig. 21b is that all of them intersect the straight lineGN � 1 at
the same point corresponding to the voltage V � V0 across
the junction. It is usually assumed that this point of
intersection determines the magnitude of the gap. Thus, the
tunneling experiment shows that the magnetic field in
ultrathin superconducting bismuth films does not suppress
the gap D, as usually occurs in superconductors, but leads to a
growth of the density of states inside the gap and to a decrease in
the coherent peak.

This behavior of the superconducting gap with strength-
ening magnetic field, discovered in Ref. [89], is a serious
argument in favor of the idea that the modulus of an order
parameter can remain finite on the insulator side of the
transition as well, taking account, instead of the super-
conducting gap, of the energy of the pairwise superconduct-
ing correlations of the localized electrons. As the magnetic
field aligns electron spins due to the Zeeman effect, the
correlation energy has to decrease, and the hopping con-
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ductivity to increase. For films with a thickness b > bc, we can
therefore expect the appearance of a negative magnetoresis-
tance in strong fields at low temperatures. In the series of the
RB�T � curves in Fig. 21a this could manifest itself in the low-
temperature intersection of curves recorded in strong mag-
netic fields. However, as can be seen from Fig. 21a, no such
intersection occurs in bismuth films in fields of up to 5 T,
although, it cannot be excluded that fields below 5 T are
insufficiently strong.

By detecting transitions on films of different thicknesses
and tracing the dependence of the critical resistance Rc at
transitions in the presence of a magnetic field on the thickness
b using one and the same series of films, it is possible to verify
the universality of the critical resistance in one experiment
[92]. From the theoretical viewpoint, the value of Rc at
transitions in a field can differ from those at transitions in
the absence of a field, but it should nevertheless be universal
as well. However, it turned out that Rc at transitions in a
magnetic field substantially varies with a change in the
thickness of the film, despite the fact that all the transitions
a fortiori relate to one and the same class of universality, and
the poorly controlled experimental factors are identical. With
an increase in b, a decrease is revealed in the normal resistance
of the film, a strengthening of the critical field, and a decrease
in the critical resistanceRc, although, according to Fig. 21, the
normal resistance of the bismuth film and its critical
resistance Rc in a magnetic field are virtually coincident.
This is, however, not the case in beryllium.

Ultrathin beryllium films. Beryllium can be deposited onto
a cold polished surface in the form of a continuous film even
in the case of a very small effective thickness and even in the
absence of an amorphous Ge underlayer [93]. Then, the
superconducting transition temperature of amorphous Be
films can reach 10 K, although the transition temperature of
crystalline Be is less than 30 mK. [In this sense, Be behaves
similarly to Bi: an amorphous Bi film deposited onto a cold
substrate can become superconducting at a temperature
above 5 K (see Fig. 18a), whereas crystalline Bi does not
exhibit superconductivity at all.]

As is seen from Fig. 22, the ultrathin Be films also display
superconductor±insulator transition. Both the film thickness
b and the magnetic field B can serve here as the control
parameter. The family of resistance curves in a zero field at
different thicknesses differs only a little from the appropriate
curves for Bi (the nonmonotonic behavior of two curves in the
immediate vicinity of the transition point is probably due to
some factors related to experimental conditions, for example,
an overheating of the sample or the presence in it of a certain
characteristic small size limiting the coherence length [see
inequality (64)]. These two families of curves differ signifi-
cantly only in the values of the critical resistance.

The family of resistance curves in a magnetic field
(Fig. 22b) deserves more attentive consideration. If we limit
ourselves to temperatures T < 1:6 K, we can easily single out
a clearly pronounced horizontal separatrix in the field
B � 0:65 T. However, this separatrix has an additional rise
for T > 1:6 K, which apparently also refers to superconduc-
tivity. Indeed, forT > 3:8K the resistanceR is independent of
the magnetic field or depends on it very weakly, but for
T < 3:8 K a strong field dependence appears. This depen-
dence is naturally explained by the influence of the field on the
superconducting fluctuations or on the equilibrium super-
conducting state. Therefore, we should consider the tempera-
ture TcB � 3:8 K corresponding to the onset of transition as

the representative temperature of the superconducting transi-
tion in the film under consideration; if we utilize the
traditional method and select the temperature Tc at which
the resistance in the zero field decreases by a factor of two (or,
for example, by 10%) relative to the normal resistance, then
we should obtain a value of approximately 2.5 K.

The separatrix of the family of curves presented inFig. 22b
is characterized by two different values of the resistance,
namely, by the normal resistance RN � 10:7 kO=&, and by
the quantum critical resistance Rc � 4:4 kO=&. Other ultra-
thin Be films behave analogously. As the film thickness
increases, RN gradually decreases to 5.6 kO=& and the
critical resistance Rc grows to 7.8 kO=& [95]. The critical
resistance is Rc < RN in some films, and Rc > RN in other
(thicker) ones. The thermodynamic superconducting transi-
tion in the absence of a field, with a Tc of about 3 K, and the
quantum phase transition in the magnetic field are in no way
connected with one another. In this case, the quantum
transition corresponds well to the one-parametric scaling
scheme: the separatrix is strictly horizontal and all the data
fall in a single curve upon their processing with formula (102).
However, the duality of the 2e-bosons±vortices system is not
realized: the resistance Rc depends on the film thickness.

2.25 T

0.65 T

0.05 T

B � 0

102

101

100

10ÿ1

0 2 4 T, K

b
R&, kO

RN

Rc

10ÿ1

101

103

105

107

5 10 150 T, K

R&, kO
a

4.6 A
�

15.5 A
�

1

2
3

4

5
6

7

8

9 10

Figure 22. Superconductor±insulator transition in ultrathin Be films. (a)

Variation of the temperature dependences of the resistance of amorphous

Be films upon increasing their thickness b; the numbers (1±10) alongside

the films correspond to the number of sequential depositions; near curves 1

and 10, the effective thickness of the corresponding films is indicated [94].

(b) Temperature dependences of the resistance of ultrathin Be film with an

effective thickness b intermediate between the thicknesses of films 8 and 9

in magnetic fields from zero to 2 T [95, 96].

26 V F Gantmakher, V T Dolgopolov Physics ±Uspekhi 53 (1)



According to what was said in Sections 1.4, 2.2, 2.4, and
2.5, we can expect the occurrence of a transition to a Bose
insulator in Be with the localization of electron pairs at the
transition to the insulating state and their subsequent
decomposition and delocalization of electrons in a strong
magnetic field. This process must be accompanied by
emergence of a significant negative magnetoresistance simi-
lar to that observed in granular films (see Figs 4 and 5). This
process was not revealed in Bi films (see, however, the
comments on Fig. 21a), but it was observed on a giant scale
in InO and TiN films (see Section 4.2). In beryllium, the giant
negative magnetoresistance was indeed observed [97±99], but
only in the high-resistance films lying in the diagram in the
insulator region, although comparatively close to the super-
conductor±insulator transition. Figure 23 gives an example of
the field dependence of the resistance measured at a
temperature of 100 mK. The initial resistance of the film,
which was equal to about 4MO, first increased by almost two
orders of magnitude with increasing field strength and then
decreased by almost three orders of magnitude.

Thus, superconductivity in beryllium is observed in low-
resistance (thicker) films, while giant negative magnetoresis-
tance occurs in high-resistance (thinner) films, so that the
relation between and the common nature of these phenomena
are not evident a priori. However, a thorough analysis of
indirect data (see Ref. [100]) suggests that the negative
magnetoresistance of the high-resistance films is due to
precisely the decomposition of localized pairs in the Bose
insulator that was formed in weak magnetic fields.

Thus, the experiments on ultrathin films, which are
undoubtedly two-dimensional systems, showed that:

(a) the separatrix separating the resistance curvesR�T � at
different thicknesses, which refer to the superconductor
domain and to the insulator region, is horizontal in Bi and
Be films, although it has generally a finite slope, dR=dT 6� 0,
as T! 0 in films of other metals (Fig. 19b);

(b) the critical resistance Rc takes on various values in
films of different materials, on different substrates, etc.,
although these values differ by no more than a factor of two
either way from RQ � �h=�2e�2 � 6:45 kO; in transitions
occurring in a magnetic field, Rc varies with varying film
thickness in films of one and the same series [92];

(c) in transitions occurring in a magnetic field used as the
control parameter, the critical resistance Rc can differ from
the film resistance RN in the normal state (Fig. 22b);

(d) if the role of the control parameter is played by the film
thickness b, then both the transition temperature (see Figs 18,
22a) and the gap width (see Fig. 20) decrease as the transition
point is approached; in this case, the gap `becomes over-
grown' gradually: a finite density of states appears in it, which
increases with the approaching transition (see Fig. 20);

(e) if the film thickness b is close to the critical value bc,
then the magnetic field does not shift the onset of the resistive
transition toward lower temperatures (Fig. 21a) and does not
suppress the gap or, to be exact, does not decrease the value of
the characteristic energy D in the spectrum, but gradually
increases the density of states inside the gap (Fig. 21b); it
should be noted, however, that the last result was obtained
only on Bi films.

4.2 Variable-composition materials
Alloys and compounds whose electrical properties are
determined by deviations from the stoichiometric composi-
tion or by special type of defects compose a special type of
materials in which, in principle, superconductor±insulator
transitions can be observed. Usually, these are films with a
thickness on the interval

100 A
�
9 b9 2000 A

�
: �103�

Due to the thickness limitation from below, the state of the
film is low-sensitive to the state of the boundary and electron
scattering by the boundary. In thicker films, problems are
expected with the homogeneity of the concentration distribu-
tion of the constituent elements or vacancies and with the
formation of granulesÐhence, the limitation on b from
above. The dimensionality of the electron systems in such
films should be interpreted with caution: the electron mean
free path l in them is usually less than b; the London
penetration depth l determining the diameter of vortices is
greater than b, and the superconductive coherence length z is
comparable to b.

It is precisely such properties that are characteristic of
amorphous InÿO films, the description of experiments on
which we turn to now.

4.2.1 Amorphous In±O films. Upon the deposition of high-
purity In2O3 on an SiO2 substrate using electron-beam
sputtering in a vacuum, an amorphous InOx film is formed
without crystalline inclusions with a certain oxygen deficit
q � 1:5ÿ x [101, 102]. The concentration q of vacancies,
which act as donors, depends on the residual oxygen pressure
in the vacuum chamber during sputtering. In small limits, q
can be additionally changed by means of a soft annealing at a
temperature no higher than 50 �C; the annealing in a vacuum
increases q, while the annealing in air, on the contrary,
decreases it. The oxygen deficit, in turn, determines the
concentration n of electrons that do not participate in
chemical bonds between In and O atoms. These electrons
can be either localized under the action of the random
potential of the amorphous material or be delocalized if n is
sufficiently large, n > nc. At low temperatures, the system of
delocalized electrons becomes superconducting.

Figure 24a displays the temperature dependences of the
resistance of an amorphous InÿO film in three different
states [101]. For the quantitative characterization of the film

0 2 4 6 8 10
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T � 100mK
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R, kO

Figure 23. Field dependence of the resistance of a Be film with a thickness

slightly less than critical [99].
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states, the product kFl was employed, which was determined
at room temperature from the data on the film resistance and
theHall effect in the films. This product, in general, takes into
account both the electron concentration n � k 3

F=3p
2 and,

through the electron mean free path l, the degree of
disorder. When the state of the metal is close to the
localization threshold, the parameter kFl becomes less than
unity. In this region, kFl still can be used for the characteriza-
tion of the film, although l cannot yet be considered as the
mean free path.

The fact that the twomeasured dependencesR�T � plotted
in Fig. 24a on the �1=T; lnR� coordinates are straight lines
with different slopes means that in the appropriate states the
resistance changes according to the law R � R0 exp�T I

0=T �
with different activation energies T I

0 . In the lower curve, a
superconducting transition is observed, whose temperature
Tc is indicated by an arrow. As can be seen from Fig. 24b, no
gap is seen on the abscissa axis between the T I

0�kFl � and
Tc�kFl � functions. This means that the transition is unsplit
(cf. the data for the NbÿSi system in Fig. 1, and for
amorphous bismuth in Fig. 18). Although these graphs
correspond rather to the phase diagram given in Fig. 2c, the
existing accuracy does not make it possible to exclude the
variant displayed in Fig. 2b.

Basic experiments on the quantum phase transition in
InÿO films were conducted in a magnetic field. Their results
can be presented in two forms: as a series of RB�T � curves
recorded in different magnetic fields, or as a set of isotherms
RT�B�. If the series of RB�T � curves possesses a horizontal
separatrix RBc

�T � � Rc, i.e., the transition can be described
within the framework of one-parametric scaling, then the
isotherms RT�B� intersect at one point with an abscissa
B � Bc. In some series of experiments with weak critical
fields Bc, it is precisely this that is the case [103, 104, 106]. In
other experiments, for example, in the absence of a magnetic
field (see Fig. 24), as well as in the case of strong critical fields
Bc, the separatrix of the families of curves R�T � has finite
slope, which can be of different signs (Fig. 25). Earlier, the
positive slope of the separatrix, qR=qT > 0, as in Fig. 25a,
was considered to be the indication of the presence of granules

and macroscopic inclusions. After the appearance of paper
[59], grounds appeared to consider that this separatrix can, on
the contrary, indicate the absence of macroscopic character-
istic lengths in the random potential. In any case, it can be
asserted that the schemes of one-parametric scaling are
insufficient for describing these experiments.

It should be noted that in the curves given in Fig. 25 there
are no signs of the suppression of the superconducting
transition temperature by a magnetic field, just as in the case
of ultrathin films. The decrease in the resistance in a magnetic
field of 1 T starts virtually at the same temperature as in a zero
field (cf. Fig. 21a).

The most interesting and most important feature of the
R�B� isotherms for the InÿO film is the presence of a
maximum [104] and negative magnetoresistance in strong
magnetic fields. Figure 26 displays two families of R�B�
isotherms in magnetic fields, namely, in a field perpendicular
to the film (Fig. 26a) and in a field parallel to it (Fig. 26b). The
states of the film in these two experiments are close to each
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Figure 24. (a) Temperature dependences of the resistance of an amorphous

InÿO film 2000 A
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thick in three states: immediately after deposition

(upper curve) and after two subsequent heat treatments [101]; the arrow

above the lower curve indicates the superconducting transition tempera-

ture Tc at which the resistance is half the maximum. (b) Dependences of

the activation energy T I
0 of insulating films and of the transition

temperature Tc of superconducting films on the parameter kFl [101].
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other, although they are not identical. All isotherms in each of
these states intersect almost at one point, whose coordinates
determine the critical values of the resistance Rc and the field
strength Bc (Fig. 26a). As can be seen from a comparison of
both families, the R�B� dependences differ qualitatively only
in weak fields, B < Bc, where the resistance is determined by
the motion of vortices and, therefore, strongly depends on the
field direction. In strong fields, B > Bc, the difference is only
quantitative.

The appearance of a negative magnetoresistance seems to
be quite natural within the framework of the assumption of
the localization of electron pairs with opposite spins, since the
magnetic field aligning the spins destroys pair correlations
[107, 108]. The fact that the effect is observed for all field
directions [108] confirms the suggested interpretation. An
additional confirmation comes from an analysis of the
temperature dependences of the film resistance in strong
magnetic fields.

The observed increase in the resistance with a temperature
decrease in the field B � 5 T, i.e., near the maximum of the
R�B� dependence, is described, albeit with low accuracy, by
the activation dependence (99) with an activation energy of
0.13 K [107]. The dependences in stronger fields can be
described by none of the formulas (99)±(101). They can,
however, be described (Fig. 27) with the aid of the formula
for the conductivity s in the critical vicinity of the metal±
insulator transition in three-dimensional space:

s � s1 � s2T
1=3 ; s2 > 0 ; �104�

where the parameter s1 reverses sign at the metal±insulator
transition (see Ref. [7]). Where s1 > 0, this parameter makes
sense of the conductivity at T � 0: s1 � s�T � 0� > 0.
According to the standard interpretation of the temperature
dependences of the conductivity of three-dimensional systems
in the vicinity of the metal±insulator transition, it follows
from the results displayed in Fig. 27 that in the electron
system of the InÿO film the quantum superconductor±
insulator transition in the field Bc is followed, upon a further
increase in the field induction, by an insulator±metal

transition in a field BIÿM � 10 T. The assumption of the
3-dimensional nature of the system is reasonable, since the
mean free path of normal electrons is a fortiori less than the
film thickness b � 200 A

�
.

A detailed study of the vicinity of the quantum super-
conductor±insulator transition in InÿO films in a magnetic
field was performed by Sambandamurthy et al. [109]. The
authors of Ref. [109] revealed a state in which the resistance at
a temperature of 70 mK increased by more than five orders of
magnitude in comparison with the critical resistance
Rc � 5 kO (see Fig. 28; cf. Fig. 26a). In comparison with the
state presented in Figs 26 and 27, the newly found state falls
more deeply into the insulator region with a field change and
proves to lie outside the critical region of the metal±insulator
transition. Correspondingly, the temperature dependences of
the resistance bear an activation nature, in accordance with
formula (99). The activation energy T I

0 depends on the
magnetic field B, reaching a maximum at the same strength
Bmax of the field as theR�B� dependence itself (Fig. 28b).With
strengthening field in the region of B > Bmax, the activation
energy decreases gradually, so that in a field of about 20 T we
can expect that T I

0 will become zero, i.e., the insulator will
pass into a metal for this state of film, as well.

Even in the maxima of the R�B� functions, the values of
the activation energy T I

0 are small; they lie in the temperature
range of 0.5±2 K, like the temperatures Tc of the super-
conducting transition [109]. As can be seen from Fig. 24, the
activation energy is greater on the insulator side; it lies on the
interval of 2±7 K. The existence of an activation energy
indicates the presence of a gap in the spectrum. It follows
from all available experimental data that this gap is connected
with a superconducting interaction, although there is no
superconductivity itself at these values of the control
parameters. By analogy with the gap in high-temperature
superconductors, we shall call this gap a pseudogap (see also
the note in the end part of Section 4.3).

For the sake of convenience, let us divide the possible
states in InÿO films into groups. To those states that in a zero
magnetic field are located on the insulator side, we ascribe
index 0; to the states lying in the superconducting region, for
which the resistance in the zero field at T � 0 is equal to zero,
we ascribe indices 1±4 in such a manner that the deeper the
state is located in the superconducting region, the greater the
index. A convenient measure of the proximity of states to the
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transition point is the critical field Bc. State 1, whose
properties are demonstrated in Fig. 28, is nearest to the
transition point (Bc � 0:45 T); in state 2, the critical field is
Bc � 2 T (Fig. 26a), and state 3 (Fig. 29), on the contrary, lies
the most deeply in the superconducting region (Bc � 7:2 T).
The nearer the state to the transition point, the higher the
resistance peak in the R�B� curve. For state 1 with its
Bc � 0:45 T, the value of Rmax at T � 70 mK exceeded Rc by
five orders of magnitude [109]; for state 2 with Bc � 2 T, the
ratio Rmax=Rc was about 10, and for state 3 with Bc � 7:2 T,
this ratio was only 1.35 [110, 111]. With a further increase in
the charge carrier concentration and a shift deeper into the
normal region, the peak of the magnetoresistance disappears
completely (state 4).

Simultaneously, there occurs a narrowing of the magnetic
field interval DB � BIÿM ÿ Bc: DB � 20 T for state 1
(Fig. 28b), 8 T for state 2 (Fig. 26a), and 0 for state 3. The
last follows from the results of the extrapolation displayed in
Fig. 29 (curve with circles). A procedure similar to that
demonstrated in Fig. 27 showed that at any values of the
magnetic field strength, including Bmax, the parameter s1
is positive, i.e., a finite conductivity should be retained at
T � 0 and any B > Bc. This means that the superconductor±
insulator transition transforms into the superconductor±normal
metal transition with increasing concentration of charge
carriers in the amorphous InÿO film.

The peak in the R�B� dependence is retained near the
superconductor±insulator transition in the insulator region,
as well, i.e., in the samples in state 0 [109, 110]. A qualitative
difference from the curves shown in Fig. 26 lies only in the fact
that the resistance atB � 0 has a finite and by nomeans small
value (a similar curve for Be films was given in Fig. 23).
According to measurements [110], the resistance variation
with temperature in fields close to Bmax obeys the activation
law (99); in a high field B � 15 T, the pseudogap was closed
and an insulator with a finite density of states at the Fermi
level was formed, in which the resistance obeyed the Mott
law: R / exp �T0=T �1=4.

The above-described results of measurements performed
on amorphous InÿO films can be represented in a common

phase diagram. Attempts to construct such a diagram were
made at various stages of the studies [104, 107, 109]. The
variant presented in Fig. 30 does not appear to be final, either.
However, it is suitable in that it provides a possibility of
involving and comparing all data that are available to date.

In order to help the reader in comparing different
experiments performed on various InO samples, the diagram
in Fig. 30a is given in a schematic form. As the axes, the
control parameters s andBwere chosen. The conductivity s is
analogous in its meaning to the parameter kFl, which was
used earlier in Ref. [101]. Concrete samples in the diagram are
marked by vertical straight lines.

The total of all these measurements can be formulated as
follows. The greatest peak of magnetoresistance (an increase
and the subsequent decrease) is observed in those states that
are close to the transition point in a zero magnetic field and
which are located in this case to the right of the transition, on
the superconductor side (samples of type 1 and 2, Fig. 30a).
However, this property is apparently not universal; in Be, as
we saw in Section 4.1 (see Figs 22 and 23), the peak of
magnetoresistance lies to the left of the transition, while in
Bi it is not at all present.

The complete phase diagram is displayed in Fig. 30b. In
order to facilitate the comparison of the data of different
experiments, the s-axis is represented in a dimensionless
form. As the basis for constructing this diagram, the data
from Ref. [109] were taken: white triangles denote Bc values;
the dark triangles correspond to Bmax; the base-down
triangles mark the states with a superconductivity, and the
base-up triangles correspond to states exhibiting no super-
conductivity. The straight cross marked the field strength
equal to 14±15 T, at which, according to Fig. 28, the basic
decrease in the resistance of a sample in the appropriate state
stops and the activation energy becomes poorly determined
[109]. The data fromRefs [106, 107, 110] are shown by circles:
white circles designate Bc; dark circles correspond to Bmax,
and the circle with an interior straight cross stands for the
field of the insulator±metal transition. Analogously, we used
white and dark squares for the data fromRef. [111]. The solid
curves separate the superconducting phase from the non-
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superconducting ones (line Bc), and the insulator from the
metal (line BIÿM). The dotted curve Bmax passes through all
dark symbols. The Bc curve is drawn through the white
symbols, and the BIÿM curve passes through the symbols
with interior crosses. The dashed curve M separates the
region of the existence of localized pairs. On the left-hand
side of Fig. 30b, this curve separates the regions of the Fermi
glass and Bose glass; on the right-hand side, this curve
separates the region in which the inclusions of a Bose glass
in metal are present.

If we extrapolate the BIÿM�s� curve to the superconduct-
ing region, then the mutual arrangement of the points of the
superconductor±insulator and metal±insulator transitions at
B � 0will prove to correspond to the diagramgiven inFig. 2c.
This agrees with the conclusions made above on the basis of
Fig. 24.

4.2.2 Polycrystalline TiN films. Polycrystalline TiN films are
produced by magnetron sputtering of a target from pure Ti in
a nitrogen plasma. The resistivity of the films depends on the
nitrogen pressure during sputtering, apparently, since the
pressure determines the excess concentration of nitrogen in
the resultant film, so that the subscript x in the TiNx formula
can reach a value of 1.3 [112, 113]. The standard thickness of
the films on which the experiments were performed was about
50 A

�
. In air, the films are very stable at room temperature.

Their resistance should be considered as a check rather than
control parameter; the temperature of the superconducting
transition in a zero field can serve as another check parameter
for evaluating the proximity of the state to the super-
conductor±insulator transition.

Figure 31a shows the resistance curves R�T � which
include the onset of the superconducting transition for four
TiN films [114]. The vertical bars in the curves indicate the
Tmax temperatures at which the resistance reaches amaximum
(onset of the transition). Furthermore, the transition tem-
peratures Tc are indicated alongside the curves; they were

calculated under the assumption that the conductivity
s � 1=R consists of the normal part

sn � a� bT 1=3 �105�
and the contribution Dss caused by the superconducting
fluctuations (Aslamazov±Larkin correction [56]):

s � sn � Dss � a� bT 1=3 � e 2

16�h

�
ln

T

Tc

�ÿ1
; Dss 5 sn :

�106�

A comparison of the Tmax and Tc temperatures in Fig. 31a
with the superconducting transition temperature Tc0 � 4:7 K
of the massive TiN sample shows that the superconductivity
in these films is strongly suppressed by disorder, so that their
states are indeed located at the edge of the superconducting
region.

In formula (106), an expression was taken for the normal
conductivity that is valid in the critical vicinity of the normal
metal±insulator transition in the three-dimensional region
[7], and an expression valid in the two-dimensional system
was taken for the contribution of superconducting fluctua-
tions to the conductivity. The use of different dimensional-
ities is justified by the fact that the mean free path of normal
electrons is l5 b � 50 A

�
, and the coherence length z in TiN

and, all the more, the London penetration length l
determining the transverse size of vortices, are much more
than the film thickness, i.e., z; l4 b. Figure 31b depicts the
conductivity s � � sÿ Dss which, upon fulfillment of the
right-hand inequality in formulas (106), coincides with sn.
Formally, the accuracy of this representation and the
extrapolation are small, since the inequality in formulas
(106) is violated for sure near the transition point and s �

proves to be the difference of two large quantities, one of
which contains a free parameter Tc. However, the very
selection of the representation (105) for sn sharply limits
the interval of possible values of the parameter Tc; moreover,
the term Dss diminishes rapidly with increasing temperature,
so that the s � curve on the right-hand side of the graphs in
Fig. 31b practically coincides with the directly measured
quantity 1=R: s � � s � 1=R. All this substantially elevates
the reliability of the conductivity extrapolation being
performed [114, 115].

The extrapolation of the straight lines given by formula
(105) to the temperature T � 0 yields negative values of the
parameter a. Consequently, if there were no superconducting
transition, the state with which we are dealing would be
insulating. On the whole, we obtain a phase diagram
predicted by Larkin [8] for three-dimensional systems; it is
schematically depicted in Fig. 2c. The states of four films that
have been studied in Ref. [114] are found on the left-hand side
of the critical region of the nonexistent normal metal±
insulator transition; with changing T, their representative
points move vertically along the x � const lines.

A superconductor±insulator transition for another series
of TiN films [116] is demonstrated in Fig. 32. Here, we should
first of all note the sharpness of this transition. The resistance
of the superconducting film and the film that becomes
insulating differ by only 5% at T � 10 K. An analysis of the
curve that is nearest to the transition point, which lies in the
insulating region, shows that the film resistance changes
according to the activation law (99) with the activation
energy T I

0 � 0:38 K. Using the above analysis of curves in
Fig. 31 and the phase diagram in Fig. 2c as the base, we can
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dashed curves have been obtained by the extrapolation of the s ��T �
dependences for T0 1 K [114].
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assert with confidence that the boundary state at the
transition, which corresponds to the separatrix of the family
of curves in Fig. 31, is not metallic, either. This means that the
scheme of one-parametric scaling is not applicable to TiN.

All characteristic features of the superconductor±insula-
tor transition in a magnetic field that were observed in
TiN films [113, 114] are very similar to those that were
observed in other materials. The sets of R�T � curves
obtained in weak fields [113] are similar to those observed
for ultrathin films (Figs 21a, 22b) or for InÿO films (see
Fig. 25). The reproducibility and the origin of the double
reentrant transition which was observed in some TiN films in
Ref. [113] have not been explained so far (similar double
reentrant transitions were also observed on the Josephson
junction arrays; see Fig. 44 in Section 5.1 and the accompany-
ing text). The R�T � curves in strong magnetic fields [114]
resemble analogous curves for InÿO in Fig. 26, not only
qualitatively, but even quantitatively. The peak of magne-
toresistance is observed in the states on both sides of the
transition point in a zero field, with a somewhat larger
amplitude in the region of the insulator [117]: the resistance
in strong fields decreased by three orders of magnitude at a
temperature of 60 mK.

4.3 High-temperature superconductors
Superconductor±insulator transitions have repeatedly been
observed in all basic families of cuprate high-temperature
superconductors. The structure of high-temperature super-
conductors belonging to these families represents a stack of
cuprate CuO2 planes containing mobile carriers. The cou-
pling between the planes is weak; therefore, the high-
temperature superconductors in the normal state demon-
strate, as a rule, a strong anisotropy of conductivity. In
high-temperature superconductors there are control para-
meters which change the degree of doping of the cuprate
planes at zero temperature and the probability of carrier
scattering in these planes and of tunneling between the planes.
At the same time, the systems of carriers in high-temperature
superconductors possess some specific features that are not
covered with the theoretical concepts discussed in Section 2.
The aim of this section is just to reveal and to discuss these
features.

Both the superconductivity and, apparently, the conduc-
tivity proper exist in high-temperature superconductors
owing to their specific atomic structure determining the
appearance of a periodic potential in which the electron
system is embedded. This potential must mainly be retained
with a change in the control parameters. Therefore, the most
common control parameter is the concentration of substitu-
tional impurities or vacancies. Figure 33a displays the curves
of the temperature dependence of resistance Rab along the
basal plane for samples of different compositions for the
compound Bi2Sr2CaCu2O8�y (abbreviated as BSCCO), in
which Pr atoms substitute for part of the Ca atoms located
between the cuprate planes: Ca! �CazPr1ÿz� [118]. At a
critical concentration of Ca atoms, zc � 0:52, a superconduc-
tor±insulator transition occurs. An analogous effect is
observed upon the substitution of some other rare-earth
atoms [119] and Y [120, 121] for Ca. Since both the rare-
earth elements andY are substitutional impurities in BSCCO,
their substitution for Ca atoms does not change the crystal
structure of the compound.

It is obvious that the conductivity is always realized
against the background of a certain disorder, which com-
monly exists as a result of a nonstoichiometry. However, the
corresponding randompotential must be small in comparison
with the crystal potential, which must ensure the retention of
the initial electronic structure. In Fig. 33a, the control
parameter appears to act on the system via a smooth change
in the average parameters of the structure rather than through
a change in the level of local disorder. The opposite limiting
case is demonstrated by the experiment conducted in
Ref. [122], whose results are given in Fig. 33b. An epitaxial
YBa2Cu3O7ÿd (YBCO) film about 2000 A

�
thick was placed

into a beam of 1-MeV Ne� ions which passed through the
film, producing defective regions in the form of cylinders with
a diameter of about 8 A

�
. Small doses ~f of irradiation led to a

reduction in the superconducting transition temperature Tc

and to an increase in the residual part of resistance, R0� ~f �, in
the temperature dependence R�T � of resistance for T > Tc:

R�T � � R0� ~f � � RT�T � :

At large doses ~f, the superconductivity disappeared, and the
resistance increased with decreasing T, according to the
Shklovsky±Efros law (100). The irradiation caused the break-
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down of the crystalline potential. Therefore, the transition
observed is, in fact, a consequence of the destruction of the
`living environment' of the electron system itself.

Let us examine the evolution of the normal and super-
conducting properties caused by a change in the chemical
composition using the example of La2ÿxSrxCuO4 (LSCO)
compounds. Superconductivity in LSCO exists if the degree
of doping x lies on the interval

0:049 x9 0:26 : �107�

At the optimum degree of doping, xopt � 0:16, the super-
conducting transition temperature reaches approximately
40 K [123].

With overdoping, x > xopt, the normal state is the usual
metal, in which the anisotropy of resistance changes only a
little with a change in the temperature, while in the super-
conducting state the superconducting planes are strongly
coupled [124]. Therefore, the quantum phase transition at
T � 0 and x belonging to the right-hand edge of interval (107)
is a 3D superconductor±normal metal transition [125].
However, the signs of the derivatives of the longitudinal
�rab� and transverse �rc� resistivities become different in the
region xopt > x0 0:04: in the direction perpendicular to the
CuO2 planes, the resistivity rc grows rapidly with decreasing
temperature, while the resistivity rab along the layers
diminishes [124, 126]. As a result, the anisotropy of resistivity
at temperatures slightly greater than the transition tempera-
ture, T0Tc, can exceed three orders of magnitude. With a
further reduction in x, the derivative qr=qT proves to be
negative in both directions, so that the nonsuperconducting
state becomes similar to a usual insulator [127, 128].

With decreasing a degree of doping x, a transformation of
the superconducting state itself occurs. The bonds between
the cuprate planes weaken strongly, so that the planes
transform into quasiindependent two-dimensional systems,
and the quantum transition at x belonging to the left-hand
edge of interval (107) is converted into a 2D superconductor±
insulator transition [125, 129]. Nevertheless, the arising
superconducting state is global and three-dimensional,
although the process of the establishment of this state can be

extended over a certain temperature range. In Ref. [129],
which contains an analysis of different experiments with
La2ÿxBaxCuO4 �x � 0:125�, a whole series of phase transi-
tions was experimentally examined in this compound with
decreasing temperature. First, charge structuresÐ stripesÐ
appear in the CuO2 planes and the coupling between the
cuprate planes weakens, after which an antiferromagnetic
ordering of magnetic moments localized on copper ions
occurs. Then, a 2D superconducting transition occurs in the
cuprate planes, but dissipation is retained because of the
presence of fluctuation vortices, and only with a further
decrease in temperature does a BKT transition manifests
itself, and a coherent superconducting state is established.

If the disorder disrupts the identity of cuprate planes
which in fact become superconducting above all, then the
temperature of the appearance of the superconducting
current can depend on the direction of this current (the
`Fridel effect' [130, 131]). As can be seen from Fig. 34a, the
resistivity rab becomes zero at T � 18 K, whereas rc does so
only at T � 10 K [129]. An analogous effect was observed in
the underdoped YBCO crystal (Fig. 34b [132]), although the
anisotropy of conductivity in YBCO is substantially less.

It is understandable from the above that the occurrence of
quantum phase transitions in high-temperature superconduc-
tors depends on a whole number of side factors which can
change and complicate the entire picture of the phenomenon,
e.g., the strong anisotropy of the crystal structure, the
difference in the mechanisms of electron transport along and
across the cuprate planes, the magnetic ordering of the
localized spins, etc. We shall not go deeply into this
boundless region, and limit ourselves only to brief notes
concerning the influence of the magnetic field.

By varying the chemical composition, we can make the
superconducting transition temperature small, i.e., bring the
system to a state close to the transition in a zero magnetic
field, and then destroy superconductivity with the aid of a
magnetic field and investigate the transition in the magnetic
field as was done, for example, in ultrathin Bi films (see
Fig. 21). When this program is realized for the basic families
of high-temperature superconductors, the families of the
thus-obtained curves are visually very similar to those given
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above, but an increase in the resistance in the normal phase
occurs according to a logarithmic rather than an activation
law [133, 134].

In Sections 4.1 and 4.2, much attention was given to the
negative magnetoresistance in strong fields, which indicates
the destruction of fluctuation-related incoherent Cooper
pairs or the destruction of pair correlations between localized
carriers. Negative magnetoresistance in strong fields was also
repeatedly observed in high-temperature superconductors. In
YBCO [135] and BSCCO [135, 136], a negative derivative
qr=qBwas observed for the transverse resistivity rc, while the
in-plane resistivity rab remained positive or equal to zero.
This is explained apparently by the specific character of
transverse magnetotransport in these families. However, a
negative magnetoresistance in LSCO is also observed in rab.
The curves (taken from Ref. [134]) in Fig. 35a are very
similar to those that were discussed above in connection with
the experiments on InO and TiN. In this case, the negative
magnetoresistance is probably explained by the destruction
of fluctuation-related quasilocalized superconducting pairs,
which, according to Galitski and Larkin [59], must lead to an
increase in the conductivity along two-dimensional layers.
An analogous effect was also observed in the magnetoresis-
tance of the electronic high-temperature superconductor
Nd2ÿxCexCuO4. We shall return to a semiquantitative
analysis of these data in Section 4.4.

The pair correlations of localized carriers lead to the
emergence of a gap or, at least, to a decrease in the density of
states at the Fermi level. Superconducting pair correlations
in a system of delocalized carriers simultaneously bring
about superconductivity and the appearance of a super-
conducting gap. Therefore, the decrease in the density of
states at the Fermi level that is caused by a superconducting
interaction but is not accompanied by establishing super-
conductivity can naturally be called the pseudogap. This
term already exists, and it appeared precisely in connection
with high-temperature superconductivity. Usually, the pseu-
dogap implies an anisotropic rearrangement of the density of
states for T > Tc, which is caused by antiferromagnetic
fluctuations, fluctuations of charge-density waves, or by
structural rearrangements accompanied by phase separa-
tion [137]. Amorphous or fine-crystalline materials, which
were discussed in Sections 4.1 and 4.2, demonstrate the
simplest isotropic variant of a pseudogap emerging only
due to the random potential without the participation of the
periodic crystal field.

All that was said in this section relative to the specific
features of the high-temperature superconductors that are
connected with superconductor±insulator transitions also
refers to organic superconductors. Organic crystals are
usually strongly anisotropic and possess two-dimensional or
even quasione-dimensional conducting structure. In these
anisotropic structures, different states of the electron system
are competing, e.g., superconducting states, ferro- and
antiferromagnetic states, or states with waves of charge or
spin density, etc. [138]. Quite unusual sequences of phase
transitions can be observed in this case, for example, a
transition in a zero magnetic field to the superconducting
state at a certain temperature Tc1 with the subsequent reverse
transition for Tc2 < Tc1 to a high-resistance normal state
[139]. To isolate a pure superconductor±insulator transition
under these conditions is quite difficult. As an example,
Fig. 36 depicts the evolution of the curves for the tempera-
ture-dependent longitudinal resistance of a two-dimensional
organic superconductor k-(BEDT-TTF)2Cu[N(CN)2]Cl in a
magnetic field. It is evident that the superconducting state is
established in a zero magnetic field only partially, and that in
strong fields no exponential increase in the resistance occurs
with decreasing temperature.

4.4 Crossover from superconductor±metal
to superconductor±insulator transitions
In Section 1.2, an algorithm was formulated that makes it
possible to distinguish between a superconductor±insulator
transition and a superconductor±normal metal transition.
According to this algorithm, it is necessary to extrapolate
the temperature dependence of the conductivity s�T � to
T � 0 on the nonsuperconducting side; the type of transition
is determined by the sign of the extrapolated value
lim s�T! 0�. Such a complex procedure is required since in
a three-dimensional metal near the metal±insulator transition
there is a region of `bad' metal with a conductivity s�0�
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smaller than the Mott limit (see, e.g., Ref. [7]):

s�0� � e 2

�h

1

x
< sM � e 2

�h
kF :

The temperature-dependent part of the conductivity of the
`bad' metal is determined by the quantum correction and has
a positive derivative qs=qT > 0, just like the hopping
conductivity in the insulator. In other words, the sign of the
derivatives qs=qT and, naturally, qR=qT changes in the depth
of the metallic region for s�0� > sM rather than at the metal±
insulator transition point.

When we discussed in the Introduction which of the
transitions, superconductor±insulator or normal metal±
insulator, occurs earlier with a change in the disorder or
electron concentration and, superimposing the appropriate
schematic phase diagrams (see Fig. 2), moved them relative
to one another, we did not take into account that on the
abscissa axis of the normal metal±insulator diagram there is
one additional characteristic point, xM, at which s�0� � sM.
If we take this circumstance into account, then two variants
should appear in the diagram in Fig. 2a, depending on the
location of the point xM. If the point of the quantum
transition MÿS is located between the points IÿM and
xM, then the superconductor transforms at this point into a
bad metal and the derivative qR=qT is negative at this point,
but the resistance tends to a finite value as T! 0. The
behavior of the resistance during such quantum transition is
very similar to that observed in the transitions in InO or
TiN, but the increase in the resistance with decreasing
temperature on the nonsuperconducting side of the transi-
tion, and the maximum of the magnetoresistance will change
by only several percent rather than by several orders of
magnitude. The evolution of conductivity in the amorphous
NbÿSi alloy shown in Fig. 1 corresponds to precisely such a
case. An analogous behavior of conductivity appears to be
observed in the MoÿGe [141, 142] and MoÿSi [143, 144]
films, in ultrathin Ta films [145], and in the high-temperature
superconductor NdCeCuO [146±148].

Before going over to concrete examples, it is necessary to
make a refinement. The diagrams in Fig. 2 relate, strictly
speaking, only to three-dimensional systems, while all
experiments [141±145] were carried out on thin films. In the
two-dimensional systems of normal noninteracting electrons
there is formally no metallic state at absolute zero; at any
arbitrarily small disorder, a temperature decrease leads, first,
to a changeover from the logarithmic increase in the
resistance to an exponential increase at

T � � eF exp �ÿ2kFl � ; �108�

and then to the electron localization at a temperature T � 0.
However, it is evident from formula (108) that already at
kFl ' 2ÿ3 the temperature T � becomes inaccessibly low,
and in the temperature range with T > T � the conductivity
of a two-dimensional system is described by the classical
formula with a relatively small quantum correction. There-
fore, in two-dimensional systems everything depends on the
location of the intersection of the curve T ��x� and the curve
of superconducting transitions Tc�x� (Fig. 37). In each
experimental facility and each laboratory, a minimum
accessible temperature Tmin exists. The unattainable region
is depicted in the diagrams in Fig. 37 by gray. The transitions
discussed in this section are realized when the point of

intersection of the T ��x� and Tc�x� curves is located in the
unattainable region (Fig. 37a); after the breakdown of
superconductivity, the resistance changes logarithmically in
accordance with formula (101). A real superconductor±
insulator transition occurs when the point of intersection is
located above the level of Tmin, as in the diagram shown in
Fig. 37b.

Let us illustrate the aforesaid by a concrete example.
Figure 38 displays the temperature dependences of the
resistance of amorphous ultrathin Ta films of different
thicknesses b [145]. All films with b5 bc � 3:1 A

�
are super-

conducting. If we select Tmin � 0:5 K as the lower tempera-
ture boundary, then the resistance of the films with a
thickness ranging 3:1 > d > 2:1 nm at a temperature of
down to Tmin varies logarithmically, and in a film with
d � 1:9 nm there occurs a crossover to the exponential
increase in the resistance. But if we decrease Tmin to 10 mK,
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then the interval of thicknesses of films with a logarithmic
dependence of resistance will narrow, but hardly disappear.A
fortiori we cannot expect an exponential increase in the
resistance in the superconducting region at temperatures
higher than the superconducting transition temperature.
Therefore, after fixing an appropriate value of a control
parameter, we can destroy superconductivity by a field and
implement a transition to the state of a bad metal with a
negative derivative of the resistance with respect to tempera-
ture, qR=qT < 0. The main difference between this state and
the insulating state is a relatively slow logarithmic increase of
resistance upon a decrease in temperature. Such an increase is
observed, for instance, in the film of the amorphous
Nb0:15Si0:85 alloy [149] in a magnetic field of 2 T, whereas a
superconducting transition in a zero field occurs at
Tc � 0:23 mK.

When the evolution of the states takes place in accor-
dance with the variant presented in Fig. 37b, we can expect
the appearance in the nonsuperconducting phase of not only
a negative derivative of the resistance with respect to
temperature, qR=qT < 0, but also a negative magnetoresis-
tance, qR=qB < 0, in strong magnetic fields. However, the
effect should be small compared to that observed in InO or
TiN, since only a weak localization caused by quantum
corrections to the conductivity occurs on the nonsupercon-
ducting side of the transition. Such negative magnetoresis-
tance in strong fields was indeed observed in at least two
materials: in amorphous MoÿSi films [143, 144], and in
textured Nd2ÿxCexCuO4 films [146±148] (Fig. 39).

The temperature dependences of the resistance of the
latter material in different magnetic fields are given in
Fig. 39a, b. As can be seen, the uncommon behavior of the
resistance, which makes it possible to discuss these experi-
ments in connection with superconductor±insulator transi-
tions, was only observed at low temperatures,T5Tc. This is,
first and foremost, the negative derivative qR=qT < 0 at low
temperatures in the fields in which the superconductivity has
already been destroyed. Figure 39b, where the low-tempera-
ture part of these curves is given on an enlarged scale,
illustrates a second feature, namely, the intersection of the
R�T � curves in fields of 5 and 7 T. At a temperature lower
than the point of intersection of these curves, the increase in
the field strength leads to a decrease in the resistance.

Since the relative changes in the resistance caused by
variations of the temperature and field strength in
Nd2ÿxCexCuO4 films are small, the experimental curves can
be compared with the results of theoretical calculations [59]
performed within the framework of the perturbation theory.
The purpose of this comparison is twofold. First, to explain to

which extent the high-temperature superconductor with a
superconductivity destroyed by a magnetic field behaves in
the region of strong superconducting fluctuations similar to a
conventional superconductor. The second purpose is to
answer the question of whether the superconducting fluctua-
tions in the dirty limit at low temperatures can, to an order of
magnitude, describe the observed negative magnetoresistance
and whether they are the forerunners of localization of
superconducting pairs.

The comparison was carried out in Ref. [148] for a film in
which the superconducting transition in the zero magnetic
field occurred at Tc � 12 K. The conductivity was calculated
using the formula

Rÿ1 � s0 � ds�B;T � ÿ a
e 2

2p�h
ln

T

~T
; �109�

where the term ds�B;T � defined by formula (48) takes into
account the superconducting fluctuations, and the last term,
which is called the Aronov±Altshuler correction and which
allows for electron±electron interaction in the diffusion
channel, is not connected with the superconducting interac-
tion. The value of Tc0 that enters into formula (48) and the
value of the classical conductivity s0 were taken from the
experiment; the value of ~T � 20 K determines the tempera-
ture at which the Aronov±Altshuler correction is zero, and
the coefficient a � 1=2 was selected so as to obtain the
agreement of the calculated results with the experimental
curve in the field of 7 T. The resultant set of curves shown in
Fig. 39c possesses features inherent in the family of experi-
mental curves displayed in Fig. 39b: the curves break out into
those that are bent downward, and those that are bent
upward, whereas the magnetoresistance is negative in strong
fields at low temperatures. Notice that we obtained correct
scales of the variation of the resistance depending on the
temperature and field strength, and also the `correct' region of
the appearance of negative magnetoresistance.

This group of materials with the intermediate type of
transition also includes the two-dimensional superconducting
electron system at the interface between two layered oxides,
LaAlO3 and SrTiO3, which are both insulators. The (100)
surface of single-crystal SrTiO3 terminated by a TiO2 layer
was coated with an LaAlO3 filmwith a thickness ofmore than
four unit cells [150]. The density of two-dimensional electron
gas at the thus-created interface could be changed by applying
a voltage across the gate deposited onto the back part of the
SrTiO3 crystal.

Figure 40a displays eight curves obtained at different gate
voltages from the set of 35 curves published in Ref. [150].
These curves demonstrate the full set of the possible behaviors
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of the films, i.e., a sharp increase in the resistance with a
decrease in temperature [the flattening of the curve corre-
sponding to the gate voltage equal to ÿ300 V at low
temperatures is explained by a size effect (see inequality (64)
and Ref. [64])], a comparatively slow logarithmic increase in
dR / ÿ lnT, the emergence of superconducting fluctuations,
and, finally, the superconducting transition whose tempera-
ture increases with increasing two-dimensional electron
density at the interface.

Like in ultrathin films, the superconducting system
discussed here is undoubtedly two-dimensional. This means
that the transition to the superconducting dissipationless
state in the zero field occurs in two stages: Cooper pairs are
formed at a temperature T � Tc0, but the dissipation remains
finite due to the motion of vortices, diminishing with
decreasing temperature, to the temperature of the BKT
transition, Tc < Tc0 (see Section 3.2). Although the resis-
tance in the vicinity of Tc is several orders of magnitude less
than the normal resistance RN of the film, it remains reliably
measurable. This makes it possible, by using the formula [151]

R�T � / exp
bR

�Tÿ Tc�1=2
; �110�

where bR depends on the difference Tc0 ÿ Tc and the dynamic
parameters of the vortex system, to determine Tc in each
separate state and thus to find the dependence of Tc on the
control parameter, which in this case is the electron concen-
tration n. According to formula (65) (see also Fig. 14), this
makes it possible to determine the product zn of the critical
exponents. Such a procedure, which was followed in
Ref. [150], yielded a value of zn � 2=3 for an electron system
in the heterostructure LaAlO3ÿSrTiO3 in the zero field:

Tc / �nÿ nc�2=3 :

The procedure described is an alternative to the one
usually utilized, in which the resistance is represented as the

function of a scaling variable (61) (see, e.g., Fig. 19a). It would
be of interest to compare the values of zn obtained by these
twomethods. However, we are not aware of such experiments
at present.

The dependences plotted in Fig. 40b demonstrate a
negative magnetoresistance in this two-dimensional system,
which is similar to that observed in InÿO [109, 110] and Be
(see Fig. 23) [99]: positive in weak fields, and negative in
strong fields, but substantially lower in magnitude. Both the
absolute and relative values of the negative magnetoresis-
tance increase when moving away from the superconducting
region. In this respect, the electron system in the
LaAlO3ÿSrTiO3 heterostructure resembles the ultrathin Be
films.

On the other hand, the magnetoresistance of the
LaAlO3ÿSrTiO3 heterostructure behaves just as it does
upon the destruction of weak localization by a magnetic
field. As a result of a strong disorder and frequent events of
elastic scattering, the areas of the closed diffusion trajectories
are very small, which shifts the process of destroying the weak
localization to the strong-field region. This inference is
applied to all examples of negative magnetoresistance in this
section.

4.5 Current±voltage characteristics
and nonlinear phenomena
A quantum superconductor±insulator transition occurs
between two opposite extremely nonlinear states of a
medium: an increase in current in a superconductor to a
certain limit does not lead to the appearance of a voltage, and
the increase in voltage in the insulator at T � 0 does not lead
to the appearance of a current until the potential of the
electric field creates the possibility of transitions between
localized states. Let us simulate both these states using single
tunnel junctions. As a model for the superconducting state,
we take a tunnel junction with two superconducting sides. If
this junction is in the Josephson regime, the current J through
it can increase at a zero voltage �V � 0� up to a critical value
Jc; then, the voltage moves jumpwise into a linear character-
istic J � V=R (curve S in Fig. 41). A similar junction between
a normal metal and a superconductor can serve as amodel for
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an insulator. The existence of one superconducting bank
emphasizes that we are dealing with an insulator that was
formed with the participation of a superconducting interac-
tion. At a voltage V � D=e, the current through the junction,
which first was equal to zero �J � 0�, also gradually moves
into a linear characteristic (curve I in Fig. 41).

Both characteristics are realized in the represented form at
a current (characteristic S) or voltage (characteristic I) that is
specified from outside. With a decrease in the external action,
a hysteresis usually arises, and the representative point
approaches the origin along the dashed line (shown in
Fig. 41 by arrows). Hystereses also arise when studying the
current±voltage characteristics of the substance in the state
near the superconductor±insulator transition, rather than the
characteristics of the junctions.

The curves S and I in Fig. 41 describe the current±
voltage characteristics of the corresponding junctions very
roughly, since many important factors are ignored here.
However, these over-simplified representations demonstrate
one important feature of the nonlinear properties of these
states: if the axes J and V are interchanged, the curves S and
I pass into one another (this feature was already mentioned
in Section 3.2).

In the physics of metals and semiconductors, the density
of states on the sides of a tunnel junction is measured with the
aid of differential current±voltage characteristics qJ=qV�V�.
Above, we have already considered similar experimental
curves (see Figs 20 and 21). In the superconducting junctions
and materials, because of the presence of supercurrents, it is
necessary to assign the current rather than voltage, when
studying current±voltage characteristics. Therefore, it is
usually the function qV=qJ�J� that is measured, whose
interpretation is somewhat more complex, in spite of the
above-noted symmetry.

Figure 42a, which was taken from Ref. [152], displays
the results of measurements of the function qV=qJ�J� in a
TiN sample with a superconducting transition temperature
Tc of about 1 K and a critical field Bc of approximately

2.9 T. In the field of 1 T, a current smaller than a certain
critical value, J < Jc � 0:6 mA, flows through the sample
without resistance. The current J > Jc destroys supercon-
ductivity. As the current increases, the response curve
dV=dJ�J �, having passed through a maximum, acquires a
value corresponding to the resistance of the normal state,
which amounts to approximately 4.6 kO. It should be
emphasized that the response curve dV=dJ�J � does not
relate to the density of states, and the presence of a
maximum is connected with a redistribution of current
over the section of the film, which is accompanied by a
gradual decrease in the proportion of the supercurrent (the
film width is 50 mm, which is substantially more than the
London penetration depth).

With strengthening field, the width of the interval of the
superconducting currents decreases (curves at B � 1:5 and
2.5 T) and in the vicinity of the critical fieldBc theminimumof
dV=dJ�J � near J � 0 transforms into a maximum. The same
transformation of the dV=dJ curves in the vicinity of the zero
current in fields of order Bc was also observed in other
materials in the neighborhood of superconductor±insulator
transitions, e.g., in InO [153] and Ta [154] (Fig. 42b).

The right-hand part �J > 0� of the qV=qJ�J � plots in
Fig. 42b strongly resembles the fan of theR�T � curves arising
with a change in the magnetic field strength used as the
control parameter (cf., for example, Fig. 25). In Ref. [153],
both series of curves were obtained using one and the same
InO sample. A comparison showed that if we make a
transformation T / J 0:4, then the curves are superimposed
on each other rather well. This made it possible to explain the
evolution of the current±voltage characteristics similar to
those that are shown in Fig. 42b by an overheating of the
electron system relative to the ambient temperature, via
constructing one series of curves with the aid of calculations
based on another series.

The electron temperature Te is determined by the balance
between the Joule heat VJ � J 2R�Te�, which is liberated in
the sample, and the energy flux Q from the electrons to the
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phonons:

Q � a�T 5
e ÿ T 5� � J 2R�Te� ; �111�

where a is the proportionality factor, the phonon temperature
is assumed to be equal to the ambient temperature T, and the
resistance is assumed to be dependent only on Te. Using the
experimentally obtained functions R�Te� and equation (111),
which implicitly assigns Te�J �, it is possible to calculate the
current±voltage characteristics qV=qJ as functions of the
argument aÿ1=2J containing a as an adjustable parameter,
and to compare them with the experimental curves.

Interest in the current±voltage characteristics near the
superconductor±insulator transition was stimulated, in
particular, by the fact that the scaling relationships for
the conductivity or for the resistance near the transition
point can be generalized by including dependences on the
electric field strength E [71]. For two-dimensional super-
conductors, the generalized expression for the resistance is
as follows [71, 141]:

R�B;T;E � � RcF

�
dx

T 1=zn
;

dx
E 1=�z�1�n

�
: �112�

(The above-considered expressions (77) and (102) are
obtained from expression (112) if the field strength E is
assumed to be small and fixed.) It appeared very interesting
to apply two independent scaling procedures to determining
two different combinations of critical exponents: zn and
�z� 1�n. However, the experiments [153] showed that an
increase in the field strength E immediately leads to a
deviation of the electron temperature Te from the ambient
temperature T. Since it is precisely Te that should be used in
formula (112) as the temperature, it is hardly possible to
investigate the dependence of function (112) on the second
argument at the constant first argument.

Apparently, it is precisely the overheating of the electron
system and the deviation of its temperature from the ambient
temperature that also explain the hysteresis phenomena that
were observed first in InO [155] and then in TiN [116] deep in
the insulator region at very low temperatures.

The InO sample, whose dJ=dV�V � curves are presented in
Fig. 43a, was superconducting in the zero magnetic field, but
its critical field amounted only to 0.4 T. This means that the

sample was very close to the superconductor±insulator
transition (sample of type 1 according to the classification of
Fig. 30a; white square in Fig. 30b). The desired current±
voltage characteristics were recorded in a magnetic field of
2 T, i.e., deep in the insulator region. Therefore, it is the
voltageV across the sample rather than the current J that was
the regulated variable here. The dJ=dV�V � curves are
strongly temperature-dependent: at the low-temperature
characteristic at a voltage V � 5 mV, there is a jump between
the upper and lower branches; the lower branch cannot be
fixed at all, since the signal decreases by more than three
orders of magnitude. At a temperature T � 150 mK, which
should be considered `high' in this case, the jump is observed
no longer, although the instability and the telegraphic noise at
small V are retained.

Analogous curves were obtained for TiN (Fig. 43b) in the
sample whose representative point was also located very close
to the quantum transition point, but on the insulator side. Its
resistance in the zero field changed according to the activation
law (99) with an activation energy T I

0 � 0:25 K. At a
temperature of 20 mK, jumps also occur between the two
branches, and again the lower branch of the characteristic is
located below the noise level. A hysteresis is highly visible in
Fig. 43b, i.e., a difference in the voltages at which the jumps
upward and downward occur. The position of the jumps
depends on the magnetic field applied to the sample.

It was initially assumed that the jumps indicate the
transition of the system of localized carriers to a highly
correlated state. Later on, another interpretation was
suggested by Altshuler et al. [156]. It was shown in Ref. [156]
that in the case of an exponential dependence (99) of
resistance on the temperature the deviation of the electron
temperature Te from the phonon temperature Tph leads to an
S-like current±voltage characteristic J�V � and to a bistability.
The concrete predictions made in Ref. [156] were confirmed
by measurements on InO [157].

5. Related systems

5.1 Regular arrays of Josephson junctions
Formally, even a single Josephson junction is a device in
which it is possible to accomplish a superconductor±insulator
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transition. Indeed, let us turn to the curve S in Fig. 41, which
schematically depicts the current±voltage characteristic of a
Josephson junction. With the flow of a Josephson dc current
J4 Jc through the junction, the potential difference between
the banks of the junction is equal to zero, so that a super-
conducting state is realized in the junction. However, the
Josephson current can be suppressed in some way, although
preserving the superconductivity of the banks. Then, the
current±voltage characteristic of the junction will follow
curve I in the same Fig. 41 with a current jump at a voltage
V � 2D=e, and this can be considered to be the realization of
an insulating state.

The Josephson current can be suppressed, for example, by
changing the coupling of the junction with the dissipative
environment [21, 158] or by changing the environment itself.
To do this, an experimentalist has at his disposal a whole
series of parameters, e.g., the Josephson energy EJ and the
Coulomb energy EC of the junction itself:

EJ � p
4

�
�h=e 2

Rn

�
D ; EC � e 2

2C
�113�

(Rn andC are the normal resistance and the capacitance of the
tunnel junction, respectively), and also the shunt resistance
Rsh whereby he can simulate the external source of dissipa-
tion. By varying these parameters, it is possible to make a
`nonconducting' junction from a `superconducting' junction
and even to construct a phase diagram for the states of a single
junction [159].

The development of experimental methods made it
possible to create one- and two-dimensional periodic arrays
from identical Josephson junctions. On this basis, there arose
a separate branch of the physics of superconductivity, with a
rich variety of physical phenomena (see, e.g., the review
[160]). We here only briefly consider the ideas and the results
that have a direct relation to the subject of this review and are
concerned only with the systems whose properties allow
comparison with the properties of continuous films.

Let us begin with two-dimensional systems. Let us
imagine a square array with the number of cells on the order
of 200� 50, in whose nodes the islands of an aluminium film
are located, which are connected between themselves through
Josephson tunneling junctions AlÿAlOxÿAl, placed in the
middles of the edges of a mesh. The typical sizes, taken from
Ref. [161], are as follows: the area of a unit cell scell � 4 mm2;
the area of an island sisl � 1 mm2; the area of a tunnel junction
stun � 0:01 mm2, and its Coulomb energy EC, on the order of
1 K. The arrays of another research group were several times
less in area scell of the cell and approximately the same for the
values of stun and EC [162].

Special experiments showed that it is possible to ensure
that the spread in the parameters would not exceed 5%. This
array, in essence, is similar to a granular superconducting film
in which all granules are strictly identical and have an
identical temperature Tc of the superconducting transition,
superconducting gap D, number of nearest neighbors, etc.

Figure 44a displays temperature dependences of the
normalized resistance of six such arrays of identical size,
differing in the energy ratios x � EC=EJ. The superconduc-
tor±insulator transition demonstrated by this set of curves is
very similar to those that occur in continuous films. In
principle, this is rather natural, if we take into account that
the model of a granular superconductor [45] discussed in
Section 2.2 is also entirely applicable to Josephson junction

arrays. The arrays, from the viewpoint of this theory, are
simultaneously both simpler andmore complex objects than a
continuous granular film. The simplicity consists in the
parameters of all granules±cells being identical and measur-
able independently; all nonzero constants Bi j and Ji j entering
into Hamiltonian (19) are also identical and are determined
by the capacitance C and normal resistance Rn of a junction,
respectively. An additional complexity lies in the fact that the
array is a multiply connected object and its unit cell is by no
means determined only by the parameters (113) of the
junction itself; the energies EC and EJ, on the one hand, and
the areas of the cell �scell� and island �sisl�, on the other hand,
are completely independent. The energies EC and EJ can be
sufficiently small �EC � EJ 9D�, but the areas scell and sisl can
remain comparatively large. Accordingly, the theory of
transport phenomena in such arrays [163, 164] does not
reduce to the theory of granular superconductors.

We analyzed the temperature dependence of resistance at
low temperatures in two arrays which behave, judging from
the temperature dependences of their resistance shown in
Fig. 44a, as insulators. It was found that this dependence
follows an activation law

R& / exp
T I
0

T
; T I

0 � D� 0:25EC : �114�

Relation (114) for T I
0 is by nomeans a numerical coincidence.

This relation was observed independently by three experi-
mental groups [161, 162, 165] in different square arrays. This
means that even in arrays±insulators the aluminium islands
remain superconducting and serve as containers for Cooper
pairs. For an electron to tunnel from one island to another,
first, there should occur a destruction of the pair, which
requires an energy D per electron, and, second, there should
occur a redistribution of effective charges in all tunnel
capacitances (which requires an additional energy EC=4).

In a magnetic field, the coefficient T I
0 in the Arrhenius law

(114) decreases to 0:25EC; the magnetic field destroys the
superconductivity in aluminium islands and makes the gap D
vanish (Fig. 44b). Thus, negative magnetoresistance can exist
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in insulating arrays, as well. In contrast to continuous films
(e.g., InO; see Figs 27, 30), these arrays behave as insulators in
strong fields, as well, since the normal electrons, because of
the Coulomb blockade, remain localized in the islands. A
similar behavior was also observed in granular superconduc-
tors (see Fig. 5).

Let us now return to Fig. 44a, according to which the
critical value of the control parameter is xc � 1:7. The R�T �
curve at x near this value has additional features, namely, the
decrease in the resistivity related to the development of a
superconducting state is replaced by an increase in the
resistance by three orders of magnitude at temperatures
below 200 mK, and then, for T < 40 mK, the resistance
continues decreasing. Such a behavior is called a double
reentrant transition. Double reentrant transitions were also
observed in continuous films, e.g., TiN [113]. However, there
is no complete clarity of this issue to date; it is assumed that
such transitions are due to an inhomogeneous granular
structure. In this sense, the experiments on arrays have one
advantage: the structure of arrays can be controlled much
better. However, it is unclear to which extent the double
reentrant transitions are reproducible on different arrays.

Recall that the reentrant behavior near the transition
point in a granular superconductor was predicted in Ref. [45]
(see Fig. 8 and comments on it in Section 2.3 and Refs [46±
48]).

The difference between the arrays and continuous films is
especially substantial in very weak magnetic fields perpendi-
cular to the array plane. The field is concentrated in the
regular periodically repetitive holes of the array. Since the
holes are surrounded by superconducting rings, the magnetic
flux through them is quantized, so that an integer number of
vortices passes through each hole, each vortex containing one
magnetic flux quantum F0 � 2p�h=2e. Therefore, for measur-
ing the field B in the arrays, the concept of frustration f, the
average number of magnetic flux quanta per array's cell, is
used:

f � B

WF0
; �115�

where W is the number of cells per cm2. The characteristic
value of the field B depends on the dimensions of the cell but,
generally speaking, it is very small: the frustration f � 1
usually corresponds to a field induction B in the range from
� 4 G [161, 166] to � 40 G [162, 167].

The measurements of the transport properties of arrays in
amagnetic field [161, 162, 166, 167] showed that the resistance
R� f � has minima at those values of frustration that are
described by rational fractions: f � fnm � n=m, where n and
m are integers, and is periodic in f in the sense that in the
vicinity of the values f and f� 1 the function R� f � behaves
alike. Figure 45 presents, as an example, R� f � isotherms for
two temperatures, 0.08 and 0.18 K, on a square Josephson
junction array (x � 0:9, i.e., x < xc). It is seen that the array
resides in the superconducting state not only in the zero field
at f � 0, but also at f12 � 0:5, when vortices exist in each
second cell of the array. When the lattice of vortices is
commensurate with the lattice of holes, then the lattice of
vortices is rigidly pinned, and the magnetic field is stationary
located outside of the superconducting film and in no way
influences the superconductivity of the array. Small changes
in a magnetic field disrupt the commensurability of the
lattices and the vortices become mobile, which leads to

dissipation accompanying the flow of current through the
lattice of junctions.

The R� f � curve (see Fig. 45) also exhibits minima at
f � f13 � 1=3 and f � f23 � 2=3. Their depth depends on the
quality and number of periods of Josephson lattice and on the
temperature. Under favorable circumstances, the resistance
at these points can also reach zero. The heights of the local
maxima of the resistance also depend on the same factors: one
can see clearly from Fig. 45 that a temperature decrease leads
to their growth.

Thus, a change in themagnetic field gives rise to a chain of
phase transitions between superconducting states at f � fnm
(certainly, with sufficiently small n and m) and insulating
states in the case of the incommensurability of the lattices of
vortices and junctions. For this to occur, magnetic fields are
required that are several thousand times weaker than those
that cause analogous chains of transitions under the condi-
tions of the quantum Hall effect (see, e.g., the review [7]).

It is easily seen that the picture represented strongly
provokes the introduction of the idea of the vortex±electron
pair duality: the vortices are localized at f � fnm and the pairs
ensure superconductivity; the pairs exist for sure in the
insulating state and are localized for sure in the islands. It
only remains to suppose that the vortices can be super-
conducting and that the transition to the insulating state is
certainly caused by their delocalization. The duality, how-
ever, implies that the vortex system allows a representation in
the form of a gas of quasiparticles. It should be noted that the
array gives more grounds for such representation than a
continuous film. When moving in the film, a vortex is always
in the dissipative medium, while moving over an array, it
mostly exists outside of the film (see, in particular, Ref. [168]
in which for arrays of a special form it was possible to derive a
dual transformation exactly).

Naturally, the same technique makes it possible to
prepare one-dimensional arrays of Josephson junctions.
Transitions in such systems were studied in Ref. [169]. The
sample depicted in Fig. 46a has the form of a strip consisting
of aluminium islands, each connected with its neighbors to
the left and to the right through two parallel tunnel junctions
Al=Al2O3=Al. These two junctions implement a Josephson
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coupling between the adjacent elements of the one-dimen-
sional system. In this case, the effective Coulomb binding
energy EC � e 2=2C is determined by the total capacitance of
two parallel junctions, and the effective Josephson energy EJ

can be varied using a magnetic field, since it depends on the
magnetic flux BS passing through a hole with an area
S � 0:12 mm2, along whose perimeter the junctions are
located:

EJ � EJ0

���� cos pBSF0

���� ; F0 � 2p�h

2e
� 20:7 G mm2 : �116�

The theoretical model describing this system is discussed in
detail in the review [65] as the simplest example of a quantum
phase transition.

In Ref. [169], three identical chains of different lengths
(containing 255, 127, and 63 junctions) were measured.
Figures 46b and 46c display the current±voltage character-
istics of the longest chain. In the zero magnetic field, the
superconducting current Jc reaches approximately 0.8 mA
(Fig. 46b). Jc diminishes with strengthening field, to become
zero at a field of about 62 G. Then, the current±voltage
characteristic changes radically: a section with J�V � � 0
�jVj < Vt� appears in it (Fig. 46c). The threshold voltage Vt

increases with strengthening field, reaching a maximum at
B � 86 G. This is that induction of the field at which,
according to formula (116), the energy EJ becomes zero.

Figure 46d displays the temperature dependences of the
resistance of two chains of different lengths in magnetic fields
that include the field of the superconductor±insulator transi-
tion. All the curves referring to the short chain flatten out at
low temperatures:

R�T � � const for T < Tshort ;

where Tshort decreases gradually from 0.3 K at B � 0 to
0.15 K at B � 64 G. This should be expected according to
the scaling hypothesis, since the argument of the arbitrary
function in Eqn (63) for L < Lj is x=L rather than x=Lj,
and x is temperature-independent in the case of one-
parametric scaling. On the contrary, the resistance
increases in the long chain at the lowest temperatures and
in the fields B0 60 G. This means that inequality (64) for
the long chain at temperatures down to the lowest ones used
in measurements was fulfilled, at least, on the insulator side.
The last limitation is connected with the fact that on the
superconducting side the R�T � curves for the long chain
also come to a constant level for T < Tlong. However,
Tlong < Tshort in all the fields.

5.2 Superconductor±insulator type transitions
in an atomic trap
The terminology used in the consideration of quantum phase
transitions recently appeared in atomic physics in connection
with experiments on the Bose condensation of a gas of
ultracold atoms. The authors of Ref. [170] discussed the
possibility of establishing conditions for atoms, which
resemble those under which electrons exist in solids and
which lead to quantum phase transitions. Soon after, this
experiment was realized in Ref. [171].

The rarefied gas of 87Rb atoms was subjected to laser
cooling and placed into a magnetic trap in which the atoms
were retained because of the presence of a magnetic moment
in them. The total number of bosonic atoms in the trap,
N � 2� 105, was much fewer than that in 1 mm3 of the
substance, but it was sufficient for the statistical laws to be
applicable to them. A three-dimensional crystal lattice was
imitated with the aid of three standing linearly polarized
optical waves with a wavelength l � 852 nm that were
orthogonal to each other and had mutually orthogonal
polarizations. The neutral atoms in the field of an electro-
magnetic wave acquire an electric dipole moment propor-
tional to the field strength. The force acting on the atom is
determined by the product of the dipole moment by the field
gradient. The potential for the atoms, which is proportional
to the sum of the intensities of all three waves, takes the form
of the potential of a simple cubic lattice:

U�x; y; z� � U0

�
sin2 �kx� � sin2 �ky� � sin2 �kz�� ; �117�

where k � 2p=l, and U0 is the depth of the potential well in
one standing wave of the laser field. This depth can be varied
by changing the intensity of the laser waves. It can be
conveniently characterized by comparing it with the kinetic
energy Ek � �h 2k 2=2m of an atom, which is assigned by the
laser wavelength l and by the atomic mass m. In the
experiment under consideration, the well depths could be
changed from zero to 22Ek. On the whole, the trap contained
about 150,000 sites with an average number of atoms of
approximately 2.5 per site in the center of the trap.

Since the potential for the bosonic atoms, created by
standing laser waves, does not contain disorder, the system
designed in Ref. [171] corresponds to the model of bosons on
a lattice of sites [55], which was discussed in Section 2.4. The
corresponding phase diagram is given in Fig. 9a. The growth
of the hopping frequency J occurs with a decrease in the well
depth of the periodic potential (117). According to the
predictions of the theory [55], at small J, i.e., at a large
amplitude U0 of the periodic potential, all bosons are
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localized in the wells and together form a Mott insulator; as
U0 decreases to a critical value, the bosons are delocalized and
pass into the Bose condensate.

For determining the degree of the coherence of atomic
wave functions, a testing laser was utilized. In order to
eliminate the influence of the structure-forming periodic
potential, it was sharply switched off, so that the atomic
wave functions began to evolve in the free space. Since the
temperature was very low and the kinetic energy of the
atoms was very small, the evolution proved to be compara-
tively slow, and it was possible to fix the interference pattern
that appeared as a result of diffraction of the laser beam by
the atomic system with that degree of coherence of wave
functions that was formed against the background of the
periodic potential.

The results of measurements are represented in eight
interference patterns (Fig. 47); the amplitudeU0 of a periodic
potential in which the pattern was formed is indicated in Ek

units in the upper left-hand corner of each pattern. In the
absence of a periodic potential �U0 � 0�, the interference
pattern is a result of the diffraction of the laser beam by the
unstructured Bose condensate. As long as the amplitude of
the periodic potential is small �U0 � �3ÿ10�Ek�, all bosonic
atoms remain delocalized, but the Bose condensate formed of
them exhibits a spatial density modulation. Since the totality
of all the atoms comes forward as a single quantumobject, the
relaxation of the system after switching off the external
periodic potential occurs slowly. Therefore, the modulation
picture takes the form of a usual Laue diffraction pattern, and
the intensity of the side interference maxima grows with
increasing amplitude of the periodic potential. In this case,
the representative point is located in the phase diagram in
Fig. 9a sufficiently far to the right, in the region of super-
fluidity. According to the notation used in Ref. [55], the
system is superfluid. However, when the minima of the
periodic potential become sufficiently deep �U0 0 13Ek�,
there occurs a localization of the bosonic atoms: the
representative point in the phase diagram of Fig. 9a
approaches the ordinate axis. The wave functions of the
localized bosons are incoherent, and the system rapidly
relaxes after switching off the potential. Therefore, the
interference structure fades, giving way to the incoherent
background �U0 � �14ÿ20�Ek�.

It is thus far unclear what problems, besides mere
demonstration, can be solved with the conducting of such
experiments, but for sure the further development of this
avenuewill not be long delayed. In any case, experiments have

already appeared with ultracold atoms, in which a disorder-
tuned Anderson transition is investigated [172, 173].

6. Concluding discussion

In this review, we attempted to describe and to compare
different theoretical approaches to the issue of superconduc-
tor±insulator transitions, conclusions and predictions within
the frameworks of different models, and also to enumerate
and to systematize experimental facts. In this section, we shall
try to summarize available data, by refining the statement of
the problem and formulating what may be considered solidly
established and what requires additional study. Here, we also
describe some comparatively new results which can play a key
role in further studies.

6.1 Scenarios of the transition
There is no doubt that the very existence of a quantum
superconductor±insulator transition has been established for
sure and that, together with the characteristics of the material
(such as the film thickness, disorder, charge-carrier concen-
tration), a magnetic field can also play the role of a control
parameter. The question is rather why the transitions in
various materials occur in different scenarios and what
factors determine which of the scenarios is realized.

In the Introduction we have already discussed the
division of the transitions into two basic types, fermionic
and bosonic, depending on what occurs at the transition
point: whether the modulus of the order parameter becomes
zero or the amplitude of the fluctuations of its phase reaches
a critical value. The critical values of the conductance
examined experimentally in the two-dimensional case,
which are on the order of 10 kO, cannot apparently help in
the selection of a scenario. The values (87) obtained through
calculations within the framework of the bosonic model,
which is based on the 2e-bosons±vortices duality [70, 73, 75],
have the same order of magnitude. However, the logarithmic
estimate of the critical conductance in the fermionic
scenario, derived in Ref. [8] on the base of the results
obtained in Refs [11, 40]:

yc �
�

1

2p
ln

1

Tc0t

�2

; �118�

also gives a close value of Run if we make a reasonable
assumption that ln �1=Tc0t�0 5.

The basic experimental evidences in favor of the bosonic
model are the negative magnetoresistance in strong magnetic
fields and the presence of a pseudogap. Although the negative
magnetoresistance is also predicted [59] within the framework
of the BCS scheme with allowance for superconducting
fluctuations in the magnetic field at low temperatures T � 0,
the giant magnitude of the magnetoresistance peak in InO,
TiN, and ultrathin Be films makes it necessary to give
preference to the explanations that proceed from the bosonic
model and to assert that, at least in these materials, on the
nonsuperconducting side of the transition there indeed exist
equilibrium electron pairs in localized states. The presence of
a pseudogap can be established directly, primarily, from the
tunnel current±voltage characteristics. It should be noted,
however, that the measurements available are undoubtedly
insufficient not only to perform a classification of materials
on their basis, but even to reliably interpret the characteristics
themselves.

0 3Ek 7Ek 10Ek

13Ek 14Ek 16Ek 20Ek

Figure 47.Diffraction of a testing laser beam in a system of ultracold 87Rb

atoms depending on the amplitude of the periodic potential created by

standing laser waves; the wave amplitude is indicated in the upper left-

hand corner of each pattern [171].
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In order to speak about the bosonic model, it is probably
not necessary that both facts be simultaneously established
experimentally, i.e., the presence of a negative magnetoresis-
tance, and the presence of a pseudogap. In this respect, the
experimental data on ultrathin Bi films are demonstrative.
The negative magnetoresistance in Bi films is virtually absent.
However, the current±voltage characteristics of the tunneling
contacts on Bi films exhibit some specific features, namely, a
finite differential conductivity at a zero bias V, which
indicates a finite density of states inside the superconducting
gap, and the intersection of all current±voltage characteristics
at one point in the lineGN � 1 upon variation of themagnetic
field, which indicates that the gap is independent of the
magnetic field [89]. These features were demonstrated in
Figs 20 and 21. In particular, when the control parameter is
the magnetic field, the modulus of the order parameter at the
transition point does not, apparently, become zero.

Giant negative magnetoresistance arises when a decrease
in the binding energy of a pair as a result of the paramagnetic
effect leads to delocalization and even to an insulator±metal
transition, as in InÿO films [108]. But if the decrease in and
the switching-off of pair correlations does not lead to
delocalization, then its influence on the transport can be
insignificant. This effect was demonstrated theoretically in
numerical calculations by the Monte Carlo method: at
specific relationships between the parameters, the pairing
strongly influences the probability of the localization [64].
As can be seen from Fig. 13, the Anderson localization exists
only in the presence of attraction between the electrons in a
certain interval of values of the parameterW=t characterizing
disorder.

Thus, InÿO and amorphous Bi represent, apparently,
two different variants of a bosonic scenario. However, the
number of variants is probably not limited to these two cases.
Recall that the maximum of the peak of magnetoresistance in
InÿO is located on the superconducting side of the transition
point in the zero field, while in Be films, on the side of the
insulator. We shall return to this issue in Section 6.3.

Characteristically, the transitions in the majority of the
materials that were considered in this review stimulate the
discussion of precisely the bosonic scenario. The explanation
for this can probably be perceived from the diagram inFig. 2a.
If it is a decrease in the efficiency of the superconductive
interaction that is the main response of the system to a change
in the control parameters, then the system will most probably
go from the superconductive state to the metallic, rather than
insulating, state. Therefore, transitions in the fermionic
scenario should primarily be sought among the materials in
which the breakdown of superconductivity yields a `bad'
metal; the corresponding examples were given in Section 4.4.

On the other hand, the events in both scenarios are very
similar in the immediate proximity to the transition point: the
initially uniform system becomes macroscopically inhomoge-
neous according to the BCS theory (see Sections 2.1 and 2.6);
negative magnetoresistance appears in the dirty limit (see
Section 2.5), and the Cooper pairs appear in two-dimensional
superconductors at a temperature that exceeds the transition
temperature Tc � TBKT (see Section 1.5).

6.2 Role of macroscopic inhomogeneities
Initially, the theory of transitions in granular superconduc-
tors was developing separately and superconductor±insulator
transitions in granular and uniformly disordered systems
were considering as different phenomena. Gradually, how-

ever, it became clear that, first, the physical properties of
systems of these two types (their transport properties,
magnetoresistance, etc.) near the transition points are very
similar, and, second, macroscopic inhomogeneities as a
certain kind of granularity spontaneously appear in uni-
formly disordered systems near the transition point. This
`electronic±structural instability' can arise for two reasons: as
a result of a strong disorder [62, 63] or electron±electron
interaction [44]. As in systems of normal electrons, these two
principally different factors lead to analogous consequences.

With the development of the technology of low-tempera-
ture tunnel spectroscopy, the possibility appeared of experi-
mentally studying induced macroscopic inhomogeneities.
The authors of Ref. [174] could simultaneously and indepen-
dently measure the resistance and current±voltage character-
istic in a TiN film 5 nm thick with the aid of the Pt=Ir tip of a
scanning tunneling microscope mounted in a dilution refrig-
erator. As a result of strong disorder, the film was in a state
close to the superconductor±insulator transition: the super-
conducting transition in it occurred on the temperature
interval of 2±1.3 K, whereas the superconducting transition
temperature in the bulk material is T bulk

c � 4:7 K [113].
The differential conductivity of the tunnel junction,

measured at a temperature of 50 mK, has a usual form: it
reveals a superconducting gap inside which the density of
states decreases to zero. However, these measurements
demonstrate two specific features. First, the average width
of the gap, ~D, was approximately 265 meV, in contrast to the
value of the gap D bulk � 730 meV. The second feature is seen
fromFig. 48, which demonstrates the result of scanning of the
film surface. The superconducting state proved to be spatially
inhomogeneous (see also the earlier study [175]).

A quantitative comparison with the theory has not yet
been done, although the material in Ref. [174] for such a
comparison in fact already exists: according to this study, the
stronger the disorder, i.e., the nearer the sample to the
quantum transition point, the greater the ratio ~D=Tc in it.
This result, which confirms the theory developed in Refs [44,
63], is very important even in the qualitative form.

Notice that the electron system behaves differently near
the metal±insulator transition: the electron wave functions
become fractal [176].

6.3 Localized pairs
Although the existence of localized superconducting pairs can
at present be considered as a recognized fact, the conditions
that favor their appearance, their internal structure, and the
wave function have not virtually been discussed.
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The formation of localized pairs is favored or, on the
contrary, prevented by the statistical properties of the
random potential. Let us explain what we mean by the
example of amorphous InÿO in which the strongest shift of
the state into the depth of the insulator region was observed
under the effect of a magnetic field, with the subsequent
appearance of the strongest negative magnetoresistance (see
Fig. 28). The structural element of this material is the In2O3

molecule inside which all valence electrons participate in the
formation of covalent bonds and, therefore, are strongly
coupled. The chemical composition of the real amorphous
substance is described by the formula In2O3ÿy. The fraction
y=2 of structural units has an oxygen vacancy, and two valence
electrons in the immediate neighborhood of each vacancy prove
to be weakly connected with the ion core and are easily
delocalized, leaving pairwise correlated wells in the random
potential. In the case of two other materials with giant
negative magnetoresistance (TiN and amorphous Be), there
is probably also an analogous `quasichemical' influence on
the structure of the random potential.

The possibility of superconducting interaction between
localized carriers is merely postulated in many theoretical
models. For example, the attraction between the electrons at a
separate lattice site was introduced in Hamiltonian (51)
without discussing the problem of its origin. When asking
this question, it is useful to glance at the problem of Cooper
pairing due to the exchange of phonons from another angle,
by examining the transition from an insulator to a normal
metal on the basis of the wave functions of electrons in a
strongly disordered medium [177].

For the realization of a coherent electronic state, condi-
tion (3) determining the minimum size (4) of a superconduct-
ing particle should be satisfied. In a volume with smaller
characteristic dimensions, the superconductivity is already
absent, but as long as the spacing between the electron energy
levels remains smaller than the energy �hoD of a short-wave
phonon:

de5 �hoD ; �119�

the superconducting interactionmanifests itself in the form of
the parity effect [see formulas (5)±(7)]. This means that with
switching on a superconducting interaction the phonon
attraction mechanism can decrease the energy of the pair of
electrons localized at the same site only if condition (119) is
satisfied.

For a localized electron, inequality (119) can prove to be
too rigid: using formula (3) for the estimation and expressing
de through a Bohr radius aB of the localized state, we shall
obtain a hardly feasible inequality

�g0a 3
B�ÿ1 5 �hoD : �120�

However, Feigel'man et al. [177] pointed to the fact that
limitation (119) can be softened by the proximity to the
metal±insulator transition. Indeed, when approaching the
metal±insulator transition from the side of the insulator, the
localization length Lloc grows from aB to infinity. Therefore,
returning to the phase diagrams shown in Fig. 2, we can say in
the language of these diagrams that to the left of the point
xIÿM there is an interval of values of the control parameter,

xL < x < xIÿM ; �121�

in which the wave functions of normal electrons are localized,
but nevertheless are subject to the action of superconducting
interaction; the left-hand edge xL of this interval is deter-
mined by the equality de � �hoD.

The fractal nature of the wave functions of the localized
electrons near the metal±insulator transition can extend this
interval. The fractal dimensionality of wave functions is
Df < 3; according to the numerical calculations [178], this
quantity is Df � 1:30� 0:05 near a standard 3D Anderson
transition. The fractal nature of the wave function increases
its significant dimension Lloc, preserving the volume in which
the modulus squared of the wave function differs from zero.

The mutual arrangement of superconductor±insulator
and metal±insulator transitions under a change of the
control parameter proves, thus, to be one additional essential
factor, besides the `quasichemical' one, that is essential for the
formation of localized pairs. This arrangement, as we know,
can be different. Two of the possible phase diagrams on the
plane �x;B� at T � 0 are represented in Fig. 49. These
diagrams differ in the mutual arrangement of the line of the
superconducting transitions and the line of the Anderson
transitions, which divide the regions of metal (M), insulator
(I), and superconductor (S). The region in which the pairing is
possible but is affected by the fractality of wave functions is
marked out with gray.

Both these phase diagrams can seemingly be realized in
practice: the diagram displayed in Fig. 49a is realized in InO
and TiN (it can easily be checked that it is precisely this
diagram that is depicted in Fig. 30), while the diagram
represented in Fig. 49b applies to Be films.

Formally, the above-developed ideas about the localized
pairs and the negative magnetoresistance connected with
their destruction are applicable to the gray part of region I
designated in Fig. 49 as I2. However, the peak of magnetore-
sistance also exists in the gray part of the metallic region (see,
e.g., the experimental data on themagnetoresistance of InO in
Fig. 29). The pairing in this region probably occurs according
to the strengthened variant of superconducting fluctuations
described in Ref. [59]. Finally, an extremely interesting region
Sf exists as well. It was called in Ref. [177] the region of fractal
superconductivity. Its study is only beginning.

From the viewpoint of an experimental study of the wave
function of localized pairs, of great interest are experiments
[179] on ultrathin Bi films on anodized aluminium oxide
substrates with holes of radius rhole � 23 nm, which form a
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periodic lattice with a period of 95 nm (Fig. 50a). The film
deposited onto such a substrate also had a periodic lattice of
holes. The process of film application and step-by-step testing
was described in detail in Section 4.1. For conjugating the film
with the substrate, a layer of amorphous Ge coated with an
additional Sb layer 1 nm thick was used. For a control, a
substrate without holes was placed nearby, onto which the
deposition was produced in parallel and which was also tested
after each thickening of the Bi film.

The sets of R�T � curves for the films produced on two
substrates are very similar, both to each other and to those
that were repeatedly demonstrated above (for example, see
Fig. 18). On the thinnest (both continuous and perforated)
films, the resistance at low temperatures changes according to
the Arrhenius law (99). For an analysis, one such state was
chosen (on a substrate with a lattice of holes) not very distant
from the transition point. This state is insulating in the sense
that the film resistance grows exponentially with a decrease in
the temperature (Fig. 50b). However, magnetoresistance
oscillations determined by frustration (115) appear in this
film in weak magnetic fields: the resistance oscillates with a
period Df � 1 (the concept of frustration was discussed in
detail in Section 5.1). The most probable explanation of the
frustration dependence of resistance lies in the fact that the
magnetic field in the film is structured and is expelled to the
holes. According to classical electrodynamics, this means that
persistent currents flow around the holes, and it follows from
the periodicity of oscillations and quantization conditions
(10) and (115) that these currents are formed by electron pairs
with a charge 2e. It turns out that on the scales of rhole
superconducting currents exist, whereas on the scale of the
sample dimension there are neither superconducting currents
nor conductivity at all.

By analogy with the Bohr radius aB of a localized electron,
let us designate the attenuation length of the wave function of
an isolated localized electron pair as a2B. Because of the
overlap of the wave functions of pairs, the attenuation occurs
on the scale

Lloc 5 a2B ; �122�

which is specified by relationship (54) and is determined by
the deviation of the control parameter from the critical value
(analogously, the hopping conductivity near the metal±
insulator transition is determined by the correlation length
Lloc rather than by aB). The experiment performed in
Ref. [179] makes it possible to estimate the limitation from
below on the attenuation length of the wave functions of
localized pairs in a concrete film at concrete values of the
control parameters, which are given in Fig. 50:

rhole < Lloc <1 : �123�

No theoretical explanation of this `local Meissner effect' in a
macroscopic insulator exists so far. In particular, it is not
clear how inequality (123) is correlated with the penetration
depth.

Inequality (122) makes it possible to qualitatively under-
stand the nature of positive magnetoresistance on the left-
hand slope of the magnetoresistance peak in InÿO on the
field interval

Bc > B > Bmax : �124�

We have not yet discussed this segment of the magnetoresis-
tance curves R�B� (see Figs 26 and 28).

It is assumed that the conductivity in the field interval
(124) is determined by diffusion and hoppings of the localized
pairs. Therefore, the decrease in Lloc with strengthening field
on this interval is accompanied by a decrease in the hopping
probability and by an increase in the resistance. In this case,
however, there is also an opposite effect of the field action on
Lloc: an increase in the field strength leads to a decrease in the
binding energy and a growth in a2B and, therefore, to an
increase in Lloc. The presence of two opposite effects appears
to lead to the expansion of interval (124); its right-hand edge
is determined by the field strength at which Lloc � a2B, so that
the first factor is levelled off.

6.4 Pseudogap
The concept of a pseudogap in the vicinity of a super-
conductor±insulator transition was mentioned above in
Section 4.3 in connection with the localization of electron
pairs. Since this term is not commonly accepted, let us
formulate a definition which will be utilized here. We shall
call the pseudogap a minimum, caused by the superconduct-
ing interaction, in the density g�e� of single-particle states at
the Fermi level in the system that is not in a coherent
dissipationless state. This definition, first, involves the long-
and well-known minimum g�e� in the fluctuation regime of
conventional superconductors for T > Tc [59], and, second,
the entire region of the states of a two-dimensional super-
conductor. In an ideal two-dimensional superconductor in a
zero magnetic field, this is the range of temperatures (11) in
which, along with Cooper pairs, there coexist vortices causing
dissipation. The finite temperature range exists both in the
presence of disorder and in a magnetic field. This region can
be represented with the aid of Fig. 15: it is located between
two surfaces, from which the upper one is stretched onto the
dashed curves passing through the point Tc0, and the lower
one is stretched onto the solid curves passing through the
point Tc.

Formally, these involve all the cases of existence of
nonlocalized electron pairs in a dissipative medium with a
suppressed macroscopic coherence. A fundamentally new
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possibility of the existence of a pseudogap can be due to the
effect of localized pairs on the function g�e� or, speaking
more carefully, the pairing effect on fractal electron wave
functions.

Until recently, no experimental measurements of the g�e�
function or the pseudogap in it in the vicinity of super-
conductor±insulator transitions were available. However,
such studies have appeared recently owing to the use of low-
temperature scanning tunneling microscopy. The unique
potentials of this technique and at the same time the related
problems are clearly seen by the example of Ref. [180] in
which TiN films were investigated.

The measurements were carried out utilizing two TiN
films 5 nm in thickness. The resistance was measured at each
temperature in parallel with the current±voltage character-
istic. This made it possible to compare the evolution of the
density of states g�e� with the resistive curve of the transition
(Fig. 51).

The results of the comparison are as follows. At the lowest
temperatures, the curve of the density of states looks the way
it usually does in superconductors: it exhibits a dip to zero in
the region of eF � D, and two coherent peaks on the sides.
With the appearance of dissipation [in the vicinity of the BKT
transition (see, for comparison, Fig. 6)], the coherent peaks
disappear, and the minimum in the vicinity of eF becomes less
deep. The Cooper pairs in this regionmove in a gas of vortices
and antivortices causing fluctuations of the order-parameter
phase. The binding energy of pairs does exist, and the
coherence is absent.

Then the minimum of the function g�e� becomes smeared,
but it is retained even at comparatively high temperatures.
The problem here lies in the fact that it is difficult to
distinguish whether this minimum indicates the presence of
localized pairs or is caused by superconducting interaction in
the Cooper channel, i.e., by conventional superconducting
fluctuations or even by the Aronov±Altshuler correction [33]
to g�e� (caused by electron±electron interaction in the
diffusion channel) which has no relation to superconductiv-
ity, at all. As is known, this correction increases with
strengthening disorder and transforms into a Coulomb gap

at the normal metal±insulator transition (see Fig. 31 and the
related discussion concerning the location of a virtual metal±
insulator transition in TiN).

Thus, since the superconducting transitions are broad-
ened near the quantum superconductor±insulator transition
as a result of strengthening disorder, tunneling spectroscopy
made it possible to reliably observe a `conventional' pseudo-
gap in the zero magnetic field. It can be supposed that when it
is possible to combine tunneling spectroscopy with a strong
magnetic field, this will help in revealing and isolating the
effect from the localized pairs, as well.

6.5 Scaling
The basic collection of experimental data was compared with
the results of scaling models for two-dimensional systems.
The extent of agreement was discussed in detail in Sections 4.1
and 4.2 (for the successive stages of the comparison, see the
end part of Section 3.2). To summarize the discussion, the
following can be said.

No resistance Run that is universal for all the systems
exists. However, the theory, apparently, does not insist on its
existence [75]. The problem can, rather, be formulated as
follows: does there exist a special resistance Rc connected
precisely with the quantum phase transition or is this the
same resistance RN that characterizes the boundary state
(separatrix) at a high temperature? Some answers to this
question come from the experiments on Be, in which Rc does
exist and Rc 6� RN, and the passage from one limit to
another in the temperature dependence of resistance of the
boundary state takes the form of a step (see Fig. 22). On the
other hand, the separatrix in Bi everywhere has a small slope
qR=qT, so that Rc � RN (see Fig. 18). This can be considered
as a random coincidence, and the inclined separatrices in the
case of Al films (Fig. 19b) or InÿO films (Fig. 25) can be
seen as a smooth passage from RN to Rc. Since an inclined
separatrix does not make it possible to continue the
procedure of scaling with the employment of a scaling
variable, the question of Rc acquires a special importance:
if the resistance Rc is not a universal quantity, it is important
to understand how it depends on the properties of the
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Figure 51.Density of states near the Fermi level as a function of temperature for two different TiN films (Gn is the normalized differential conductivity).

Black curves correspond to Gn�T � graphs at four temperatures relating as 1 : 1.5 : 2 : 3. For comparison, the resistive curves of the superconducting

transitions are given for both films on the corresponding scales [180].
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corresponding quantum boundary state and whether it is
possible to directly affect Rc.

Formally, an inclined separatrix means that one should
apply two-parametric scaling. This is especially necessary if
the separatrix exhibits a tendency toward an increase in the
slope up to infinity with decreasing temperature, as in the case
of TiN (see Fig. 32) or high-temperature superconductors (see
Figs 33 and 35). However, the schemes of two-parametric
scaling still have not been applied to superconductor±
insulator transitions, to the best of our knowledge.
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