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Summary. Various experimental observations of the superconductor-insulator
transition are described and compared with two theoretical models: one based on
boson-vortex duality and the other where the superconducting fluctuations at low
temperatures in the magnetic field are calculated. The latter shows that the super-
conducting fluctuations in dirty but homogeneous superconductor act as grains in a
granular superconductor. '

When superconductivity is destroyed by changing some of parameters,
either intrinsic (carriers density, level of disorder) or extrinsic (magnetic field)
ones, the material can turn not only into normal metal but into insulator as
well. We’ll discuss here magnetic-field-induced superconductor-insulator tran-
sitions (SIT). Magnetic field transfers the superconductor into insulator in the
case when the carrier density in the material is low and the level of disorder
is high, so that without the superconductivity the material would be in zero
field on the insulating side of the metal-insulating transition. The main sign
of SIT is the fan-like set of the resistance curves R(T'): they go down with
decreasing of the temperature at fields below the-eritical, B < B., and go up
at fields B > B.. . "

The list of materials which displayed such type of behaviour contains amor-
phous Mo,Ge;—, [1] and Mo,Si;—, [2] films, amorphous InO, films (3, 4],
ultrathin films of Be [5], crystalline films of Nda_,Ce,CuO4y, [6, 7]. Two
typical examples of such sets of curves relevant to different limits are presented
in Figs.1 and 2. In Ndy—;Ce;CuOay,, (Fig.1) the growth of the resistance
with decreasing temperature on the non-superconducting side of the field-
induced transition was below ten percent so that it reminded more a metal
with quantum corrections to its conductivity than an insulator. In amorphous
InO, (Fig. 2), typical for insulator exponential temperature dependence of the
resistance resulted in almost tenfold increase of the resistance.
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All the above-listed experiments were interpreted as SIT in two-dimensional
(2D) electron systems. This interpretation for those systems where the growth
of the resistance was comparatively trifling was based on scaling hypothesis [8]
which asserts that there is no non-superconducting metallic state at zero tem-
perature in 2D. Hence any state of a film which does not display tendency
to become superconducting, i.e. which has negative derivative 0R/9T < 0,
should be accepted as insulating.

The theoretical grounds for existence of 2D-SIT which was suggested in
[9, 10] appealed to the boson—vortex duality model. It considered the super-
conducting phase as a condensate of Cooper pairs with localized vortices and
the insulating phase as a condensate of vortices with localized Cooper pairs.
The theory described only vicinity of the SIT and predicted existence of some
critical region on the (T, B)-plane where the behavior of the system was

0.3
0f[° 7
-3_5%&--‘_ i
8 1o,
(85 0.2 v
g6f 13
~ 25 O
&4 401 &
2+2 .
0L | 075 1 do0
0 5 10 15
T (K)

Fig. 1. Temperature dependence of the resistivity of Nd2-;Ce;CuOysqy films at
different magnetic fields [7]. At high fields the resistivity changes lie in the range of
10%; two upper curves cross at low temperatures.

Fig. 2. Temperature dependence of the resistivity of amorphous InO, films at
different magnetic fields [4].
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governed by competition of the quantum phase transition correlation length
¢ « (B — B.)™" and thermal length Lt o T*/# with z and v being constants
called the critical exponents. All relevant quantities in this region are supposed
to be universal functions f of ratio of the lengths which can be written in the
form of scaling variable (B — B.)/T"/**. For the resistivity in two dimensions
R this dependence takes form [10]

REI(BaT) = Rcf{(B - Bc)/Tl/ZV]7 (1)

where the critical resistance R, is a constant.

Experimenalists managed to confirm existence of this so called finite-size
scaling practically in all cases when checking the existence of supposed SIT.
Fig. 3 presents a typical example. The question is whether the possibility to
depict the data by relation (1) is a cogent argument in favor of SIT.
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Fig. 3. Scaling of the function R(T, B) for a sample Mo, Gei_z [1]; the changes in
the upper branch lie within the range of 7%.

The insulating phase which appears as the result of such SIT is rather
specific; it contains pair correlations between the localized electrons as the
remnant of the superconducting pairing. Such insulator is called the Bose-
insulator [11] and the correlated electrons are called localized electron pairs.
Of course, existence of such phase should be confirmed experimentally.

In most cases, the fan-like shape of the set of R(T, B = const) curves is
accompanied by the negative magnetoresistance in higher fields, on the insu-
lating side of the SIT but far enough from the critical region (Figs.4 and 5).
This has a natural explanation. The pair correlations are done away with the
strong magnetic field and this results in raising of the carrier mobility. Simi-
lar effect is well known for granular superconductors [12, 13]: when Josephson
currents are absent by some reason so that the conductance is determined by
one-particle tunneling between the grains then the superconductivity of the
grains results in insulating behavior of the whole material. The magnetic field
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destroys the superconducting gap in the grains and hence restores metallic
properties of the material.

So, the localized pairs display themselves at the stage when they become
decoupled and contribute to the conductance. The negative magnetoresistance
serves as an indirect manifestation of the specific insulating state destroyed
by the field. However, as the theory [9, 10] relates only to the vicinity of the
SIT, the negative magnetoresistance happens beyond the range of its action.
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Fig. 5. Set of isotherms R(T= const, B) of amorphous InO; films [4]. (a) Magnetic
field normal to the film; (b) magnetic field parallel to the film. In the fields region I
the material remains superconducting, label III marks the region of negative mag-
netoresistance. The theory [9, 10] relates to the vicinity of the boundary between
the regions I and II in the geometry (a).

Finally, the situation looks as follows. Experiments concentrate on three
specific properties as signs of the SIT: fan-like temperature dependence; scal-
ing relation (1); negative magnetoresistance. The latter is very important
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indication of the pair localization but it does not follow from the theory [9, 10].
At the same time, the data which do not display explicitly the insulating be-
havior can be adjusted with this theory as well. Additional questions come
from the observation in amorphous InO,, films [14] that all three crucial prop-
erties of the function R(T, B) remain the same with magnetic field parallel to
the film. This means that SIT is a kind of 3D-phenomenon in InO and should
be explained without reference to the boson-vortex duality.

From here follow main goals in the SIT problem: to find theoretical models
which would lead to the negative magnetoresistance; to trace how the specific
SIT properties appear in the field-induced superconductor-normal metal tran-
sition while the normal metal is shifted toward the insulating state; to find
out whether the low dimensions of the films is crucial or the SIT can happen
in 3D materials; to find the explanation for the pair localization alternative
to the boson—vortex duality. It seems that the first two goals are achieved.

The progress came from the recent paper by Galitski and Larkin [15]. They
succeeded in extending calculations of the quantum corrections due to su-
perconducting fluctuations for 2D superconductors to the low temperature
T <« T.(0) and high magnetic field B 2 Bc2(0). The corrections do include
Aslamazov-Larkin, Maki-Thompson and density-of-states (DOS) terms. In
the dirty limit do they can be written in explicit form by using digamma
function ¥(r)

2 T 3

3%(:—}2 —lng—2—7‘-+'¢(1‘)+4(7’1//(r)-—1) , (2)
where r = (1/2v')(b/t), v/ = ¥ = 1.781 is the exponential of Euler’s con-
stant, and ¢t = T/T, < 1 and b = (B — Be2(T))/Be2(0) < 1 are reduced
temperature and magnetic field. The particular feature of this expression are
the negative terms. They originate from the depression of DOS at the Fermi-
level by fluctuative pairing of carriers. This becomes important if disorder and
magnetic field make ineffective the transport by Cooper pairs and finally lead
to the negative magnetoresistance.

Expression (2) can be compared with experlment ‘Fig. 6 presents such
comparison made in [7]. One can see remarkable resemblance — there is sep-
aration between low-field curves which “bend down”, and high-field curves
which “bend up”; there is also high field negative magnetoresistance at low
temperature. Detailed analysis in [7] confirms that the fluctuations may ex-
plain all the main features of the transport in those materials where the effect
is not two large and can be described in terms of the perturbation theory. In
practice, almost all the materials except InO fall into this group. For them,
superconducting fluctuations act as superconducting grains.

The theory {15] cannot be applied to InO directly. But just as the diver-
gence of the weak localization quantum corrections point to the Anderson
localization, quantum corrections here point to the SIT. This returns us to
the problem of low dimensions. Fluctuations are larger in the systems with
low dimensions, but the difference is only quantitative and we may expect SIT
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Fig. 6. Comparison from [7] of (a) the experimental set of curves for crystalline
Nds_zCezCuOa 1y films and (b) the set calculated from the theory [15].

on the basis of fluctuations in 3D as well. These expectations are supported
by the results of numerical simulations [16, 17]. According to [17], the attrac-
tive interaction leads to the insulating phase of localized pairs well within the
metallic phase of single-particle 3D Anderson model. _

The last comment is about the finite-size scaling equation (1) related to
SIT. Certainly, expression (2) cannot be reduced to the form of equation (1)
and no genuine scaling exists. However, in a restricted region of values of T
and B representation of the theoretical curves in the form (1) can be done.
This was demonstrated in [7]. This means that the scaling presentation cannot
be the decisive argument in favor of a specific model.
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