50 Years of Matrix Isolation of Atomic Free Radicals

David M. Lee

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA Department of Physics and Astronomy, Texas A&M University, College Station, TX

CC2010, Chernogolovka, Russia, July 2010

Impurity-Helium Solids

-Very large concentrations of free radicals can be stabilized. Eg. $2 \cdot 10^{19}$ cm⁻³ D in D₂ (~0.1%), more for N in N₂. Studies of rates of tunneling chemical reactions, studies of atomic diffusion in disordered media.

- Structural and magnetic properties of nanoparticles.
- -Novel porous medium. Studies of He in disordered medium.
- Quantum effects in H-containing solids.

- High energy densities are obtainable.
- Suggested as moderators for ultracold neutrons (D₂).
- Materials with large internal surfaces. Catalysis.

Sample preparation:

E.B.Gordon, L.P. Mezhov-Deglin and O.F. Pugachev, JETF Lett, 19, 63 (1974)

Conditions during sample preparation: Pressure ~5 Torr (Temperature ~1.5 K) Gas mixture composition - [Im]/[He]=1-5 %) Gas flux ~5*10¹⁹ atom and molecules per sec Distance between source orifice and liquid helium surface in beaker ~2 cm

Sample preparation .

E.B.Gordon, L.P. Mezhov-Deglin and O.F. Pugachev, JETF Lett, 19, 63 (1974)

X-ray Diffraction Studies of the Im-He Condensates

X-ray studies were carried out at the National Synchrotron Light Source, Brookhaven National Laboratory.

X-ray Diffraction Studies of the Im-He Solids

Connected, aerogel-like structures consisting of closed-packed building blocks with defects.

Typical block size 5-9 nm, quite narrow size distribution (~1 nm). Atomic densities ~ 10^{19} - 10^{21} cm⁻³.

Wide distribution of pore sizes (8-860 nm) detected by ultrasound measurements.

S.I. Kiselev, et al., *PRB* **65**, 024517 (2001); E.P. Bernard, et al., *PRB* **69**, 104201 (2004)

Previous work done at Cornell:

Ultrasound to explore the Structure of Im-He solids

Attenuation grows as more and more helium decouples from the pores of N_2 -He sample.

Attenuation of 5 MHz ultrasound in helium in N_2 -He solid.

An idealized view of a deuterium-helium solid

Red shows deuterium molecules arranged in an FCC lattice. The molecules are in spherical J = 0 rotational states. Yellow shows a monolayer of ⁴He solidified on the helium surface. The surrounding superfluid ⁴He is not shown. Blue shows deuterium atoms substituted within the molecular lattice. The green spheres show the first five coordination shells around each atom, where the ESEEM signal is explicitly simulated.

ESR cell.

Hydrogen atom in magnetic field.

ESR hyperfine structure for interactions with nuclei of different magnetic moments.

Effect of storage of H and D in Im-He solid at T=1.4 K.

Low field ESR lines of H atoms

ESR spectra of hyperfine structures H and D atoms in HD-D₂-He solid (mixture used - H₂:D₂:He=1:4:100)

Exchange tunneling reactions

Gordon et all JETP Letters 37,282 (1983) (Chernogolovka, Russia)

FIG. 1. EPR spectra of H and D atoms for different mixtures: $1-H_2$:Ne: He = 1:1:40; $2-D_2$: He = 1:20; $3-H_2$:D₂:Ne: He = 1:1:1:60; $4-H_2$:D₂: He = 1:4:100; $5-H_2$:D₂: He = 1:10:220.

Time evolution of the ESR spectra of the H and D atoms in HD-D₂-He solid (mixture used - H₂:D₂:He=1:8:180)

sample preparation. (H₂:D₂:He=1:8:180)

V.V. Khmelenko et al., Physica Scripta, T102, 118 (2002)

Time evolution of average concentrations of H and D atoms for different make up mixtures.

H₂:D₂:He=1:20:420

H₂:D₂:He=1:8:180

H₂:D₂:He=1:4:100

H and **D** atoms in $HD-D_2$ -helium solids

E.P. Bernard et al., J. Low Temp. Phys. 138, 839 (2005)

Low Temperature Tunneling Reactions.

Calculated rate constant for the first order kinetics, k'.

$$-\frac{d[\mathbf{D}]}{dt} = k[\mathbf{H}_2] \cdot [\mathbf{D}] = k'[\mathbf{D}]$$

rate for D + HD \rightarrow D₂ + H (1.9x10⁻³ cm³mol⁻¹s⁻¹)

Takayanagi and Sato, J. Chem. Phys. 92, 2862 (1990)

ESR Spectra of H atoms in H-Kr Samples

- (a) As-prepared sample from gas mixture H_2 :Kr:He=1:1:200.
- (b) As-prepared sample from gas mixture H_2 :Kr:He= 1:50:10,000.
- (c) Sample (a) after annealing to 14.5 K and cooling to 1.35K. Amplification increased by a factor 15.

Exchange narrowing of ESR spectra of D atoms in D-Kr-He solids

ESR investigations of N atoms in N₂-He solids

The temperature dependence of the average concentration of N atoms in N_2 -He solids created by different nitrogen-helium gas mixtures

[N]
$$_{\text{max av}} = 1.0 \times 10^{19} \text{ cm}^{-3}$$

ESR spectra of nitrogen atoms and spin-pair radicals in nitrogen –helium solids at T=1.35K

Experiments with H in H₂

Flash condensing on a cold surface:

1.3 K
$$\leftarrow$$
 H + H₂

or into superfluid ⁴He:

Growing from recombination of $H\downarrow$:

 Jen, Maryland , (1957-1960)
 T>4.2 K

 Webeler, NASA, Cleveland (1975)
 T=0.3-1.0 K

 Souers, Livermore (1980-)
 T>4.2 K

 Miyazaki, Nagoya, (1980-)
 T>1.8 K

 Lukashevich,
 T>1.8 K

 Shevtsov,
 T>1.3 K

 Gordon et al.
 Chernogolovka, Russia (1974-)

Lee, Khmelenko *Cornell* (1998-)

Vasiliev *et al. Turku, Finland* (2004-) T>1.3 K

Т=0.05-1.0 К

10⁵-10⁶ smaller deposition rate

Recombination of H atoms in solid H₂

0

3

FIG. 2. K(T) for H atoms in solid H₂ for 1.35 K < T < 4.2 K.

T(K)

 $D_{rec} \approx 10^{-17} \,\mathrm{cm}^2/s$

A.V Ivliev *et al.* JETP Lett. 36, 472-475 (1982) (Moscow, Russia)

Recombination of H atoms in solid H₂

H+H2 \rightarrow H₂+H, H+H \rightarrow H₂ Journal of Chem. Phys.,116, 1109 (2002)

Schematic mechanism for the recombination of H atoms in solid H₂. Potential energy against H-H distance

Experimental setup

After one week of coating we get 50 nm thick H₂ film with 50 ppm of H, or $n_H \approx 10^{18} \text{ cm}^{-3}$

Optimal coating temperature $\approx 300 \text{ mK}$

Sample is stable for weeks of observation

 $a + b \rightarrow \text{orho-H}_2$, I=1 $a + a \rightarrow \text{para-H}_2$, I=0

Switching off the dissociator, getting doubly polarized sample:

ESR spectra with H in H_2

in a magnetic field gradient:

Burning the hole in ESR lines

$$D_{sp} \approx \frac{l^2}{t} \le 10^{-8} \, \frac{\mathrm{cm}^2}{\mathrm{s}}$$

H atoms recombination at T< 1 K

Relaxation of NMR transition _{T=150mK}

 $T_{ba} \sim 60 h$

Non-Boltzmann populations ratio at steady state

Steady state polarization of H atoms in molecular hydrogen films

o-recent Cornell data, ■-data point from Ahokas *et al.* PRL **97** 095301 (2006), Boltzmann distribution - solid curve.

Conclusions

- I. Im-He Condensates Observed:
- A. Very high Concentrations of Atomic Radicals
- B. Tunneling Exchange Reactions studied for H isotopes including influence of substrates
- C. Spin pair radicals in N-N₂ samples.
- II. H in H₂ films observed:
- A. Large departure of Populations of two lowest hf states from Boltzmann Distribution
- (substrate dependence)
- **B. Overhauser Effect with rapid relaxation through** forbidden Transition
- C. Very Long a-b relaxation time <u>but</u> impossible to fully saturate.

Acknowledgments

- Dr. Vladimir Khmelenko, Dr. Ethan Bernard and Dr. J. Jarvinen (Cornell University, USA)
- Dr. Sergey Vasiliev and J. Ahokas (University of Turku, Finland)
- Dr. Peter Borbat and Prof. J. H. Freed (Baker Laboratory of Chemistry and Chemical Biology, Cornell University, USA)
- Dr. Roman Boltnev (BINEP, Russia)
- Prof. Valery Kiryukhin (Rutgers University, USA)
- This work is supported by NSF via grant DMR 0504683

ESR spectra of H atoms in solid H_2 and gas phase

Steady state polarization of H atoms in molecular hydrogen films

